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Abstract

This paper shows that deviations from long-run price stability are optimal in the presence

of price stickiness whenever profit and utility flows are discounted at a different rate. In that

case, a monetary authority acting under commitment will choose a path for the inflation rate

that ends with a non-zero value. Such a property is relevant in a wide range of macroeconomic

environments. I first illustrate this by studying optimal monetary policy in a New Keynesian

model with a perpetual youth structure. In this setting, profit flows are discounted more heavily

than utility flows and the optimal inflation target is equal to 3.2 percent in a baseline calibration of

the model. I also show that this property leads to a positive long-run inflation rate in models with

firm entry and exit and in environments with search and matching frictions in the labor market

and another form of nominal rigidity, wage stickiness.
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1 Introduction

Most central banks in advanced economies have adopted inflation targets of 2 percent per year. The

European Central Bank officially chose this target as early as 2003. In the United States, although

the Federal Reserve had been aiming for 2 percent inflation since the mid-1990s, the target was not

made official until 2012 (Summers et al. 2018). Policymakers generally argue that this figure strikes a

balance between the necessity to provide a hedge against the risk of hitting the zero lower bound on

nominal interest rates and the costs associated with positive steady-state inflation. In macroeconomic

models used for policy analysis, these costs arise mainly from the presence of price stickiness. Taken

in isolation, this friction has been shown to imply that long-run price stability is optimal (Woodford

2003).

This paper revisits this last conclusion. It shows that, in environments with sticky prices, a long-run

inflation rate of zero is not optimal if profit and utility flows are discounted at a different rate.

The optimality of zero inflation in sticky-price models is often thought to arise from the verticality of

the long-run Phillips curve. Instead, in earlier contributions, King and Wolman (1999) and Woodford

(2003) have showed that the rationale behind this result is more complex. When prices are sticky,

the effects of inflation on real outcomes are intrinsically dynamic. An increase in the time t inflation

rate decreases markups at time t but may increase markups before time t through expected inflation.

Because firms discount the future, these effects are asymmetric and average markups can be reduced

by deviating from price stability. In other words, the long-run Phillips curve is not vertical. However,

when choosing a path for the inflation rate, a monetary authority acting under commitment weights

the consequences of its choices according to their distance in the future. This discounting effect

perfectly offsets the effect of inflation on average markups when the private discount rate—that is,

the rate of firms—which partly determines the slope of the long-run Phillips curve, and the social

discount rate, which determines the strength of the weighting effect, are equal. In that case, the

discounted effect of inflation on markups is equal to zero, and the monetary authority should focus

on minimizing the resource costs associated with price stickiness. Long-run price stability is optimal.

In the literature, little attention has been paid to cases where social and private discount rates differ.

This paper fills this gap. It shows that such a heterogeneity in discount factors arises endogenously in

several macroeconomic environments and that it justifies the adoption of moderately positive inflation
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targets, even in the absence of the zero lower bound on nominal interest rates.

I first consider a New Keynesian model with an overlapping generation structure, as in Blanchard’s

(1985) and Yaari’s (1965) perpetual youth model. On the firm side, monopolistic producers face

quadratic costs of price adjustment. This gives rise to a Phillips curve relating markups to inflation.

On the household side, individuals accumulate wealth over their lifetimes, and generations differ in

their consumption and labor supply decisions. In relation with this heterogeneity, the real interest

rate, according to which firms discount profit flows, is larger than the household discount rate. The

decentralized equilibrium is inefficient for several reasons. First, monopolistic competition introduces

a wedge between the marginal rate of substitution between consumption and leisure and the marginal

product of labor. Second, the distribution of consumption and hours worked among households is

suboptimal as young cohorts consume too little compared to older ones. Through its effect on markups

and the resource costs of price adjustment, an increase in inflation redistributes income and can

partially correct for these inefficiencies. The reduction in markups shifts labor demand and leads to an

increase in wages and hours worked. Along with the increase in the resource costs incurred by firms, it

also reduces profits and dividends. Thus, an increase in inflation benefits young generations, who rely

disproportionately on labor income, and harms older generations, who rely mainly on capital income.

In this environment, the long-run optimal inflation rate is positive as long as the social discount rate,

according to which the planner evaluates the lifetime utilities of generations, is lower than the real

interest rate. Moreover, the optimal inflation target decreases as the social discount rate increases. This

happens for two reasons. First, following the logic outlined above, the discounted effect of inflation on

markups decreases as the gap between private and social discount rates shrinks. Second, the relative

weight on young generations in aggregate welfare declines as the social discount rate rises. As a

result, manipulating markups to redistribute consumption from young to older households becomes

less beneficial. In the limit case where the social discount rate is equal to the real interest rate, the

discounted effect of inflation on markups is equal to zero, and therefore, so is the optimal inflation

target. Quantitatively, deviations from long-run price stability can be quite significant, even when the

gap between the real interest rate and the social discount rate is small. In a baseline calibration of

the model, and under the assumption that the monetary authority treats all generations equally, the

optimal inflation rate is equal to 3.2 percent in annual terms.
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Some existing results in the optimal monetary policy literature can also be understood in light of

this connection between discount factor heterogeneity and the optimal inflation rate. Bilbiie et al.

(2014) develop a model with firm entry and exit and show that deviations from long-run price stability

are optimal when the steady state is inefficient. They argue that a plausible calibration justifies an

optimal inflation target of 2 percent or higher. In their framework, firms exit the market with positive

probability in each period. As a result, the effective discount factor appearing in the Phillips curve is

larger than the household discount factor. I rederive their optimal monetary policy problem and show

that, regardless of the degree of steady-state inefficiency, the long-run optimal inflation rate is equal

to zero when the Ramsey planner evaluates utility flows according to this effective discount factor

instead of the discount factor of households. Furthermore, this property also applies to settings with

imperfect competition and nominal stickiness in other markets. In order to show that, I build a model

with search and matching frictions in the labor market and nominal wage stickiness. As shown in

Arseneau and Chugh (2008), in this setting, an increase in inflation reduces average wage markups

(or workers’ bargaining power). Importantly, the effects of inflation are dynamic. An increase in the

time t inflation rate reduces the wage markup at time t but increases it at time t−1 through expected

inflation. When negotiating wages, firms and workers take into account that they might separate in

the future. This implies that the effective discount factor used in wage negotiations is lower than the

household discount factor by a factor depending on the amount of labor market turnover. I derive the

Ramsey optimal monetary policy and show that it features a steady state with positive inflation when

the monetary authority evaluates utility flows using the household rate of time preference. However,

when the social discount factor is equal to the effective discount factor used during wage negotiations,

the discounted effect of inflation on wage markups is equal to zero, and consequently, so is the optimal

inflation target.

Apart from the aforementioned studies, this paper is related to a wide literature on the optimal

inflation rate surveyed in Schmitt-Grohé and Uribe (2010) and Diercks (2017). In particular, recent

contributions by Coibion et al. (2012) and Galí et al. (2018), Carlsson and Westermark (2016), and

Adam and Weber (2017) show, respectively, that the zero lower bound on nominal interest rates, the

combination of labor market frictions and wage-setting externalities, and firm-level heterogeneity in

productivity may provide justifications for moderately positive inflation targets. From an empirical

standpoint, the key channel through which an increase in inflation transmits to real activity in this

paper, namely a reduction in markups, finds support in studies by Benabou (1992) on data from the
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U.S. retail trade sector and Banerjee and Russell (2001) on data from the G7 economies and Australia.

Moreover, this paper is not the first to incorporate a perpetual youth structure in a New Keynesian

setting. Previous studies have considered such a framework to study how monetary policy should

respond to stock market conditions (Castelnuovo and Nisticò 2010, Nisticò 2012), or asset price bubbles

(Galí 2017). Del Negro et al. (2015) show that it can provide a resolution to the excess sensitivity

of macroeconomic variables to announcements about the future path of the policy rate in standard

New Keynesian models, the so-called forward guidance puzzle. Two papers belonging to this literature

are of especially close relevance. Nisticò (2016) studies optimal monetary policy in a model with both

rule of thumb households and financial market participants who face a finite planning horizon, as in

a perpetual-youth model. In order to use a linear-quadratic approach to optimal monetary policy

analysis, he assumes that the zero-inflation steady state is efficient and focuses on the behavior of

the central bank in response to shocks. On the contrary, one key contribution of this paper is to

provide a derivation of the long-run behavior of optimal monetary policy in a heterogeneous agent

New Keynesian perpetual youth model when the steady state is inefficient. However, I am not able

to characterize the optimal behavior of the monetary authority along the business cycle. In a recent

contribution, Cotton (2018) uses a New Keynesian model with overlapping generations to show that an

increase in average inflation may lower the equilibrium real interest rate, thereby reducing the central

bank’s incentives to raise the inflation target in the face of the zero lower bound on nominal interest

rates. In contrast, in this paper, deviations from long-run price stability arise from differences in

private and social discounting, and not from the presence of the zero lower bound on nominal interest

rates.

The paper is organized as follows. Section 2 shows that the optimality of zero inflation in the standard

New Keynesian model is the result of two offsetting forces. Section 3 studies the long-run behavior of

optimal monetary policy in a New Keynesian model with a perpetual youth structure. Section 4 shows

that differences between private and social discount factors also give rise to positive optimal inflation

rates in environments with firm entry and exit as well as in models with labor market frictions and

nominal wage stickiness. Section 5 concludes.
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2 Optimal long-run inflation in the standard New Keynesian

model

This section shows that the optimality of long-run price stability in the standard New Keynesian

model stems from the canceling out of two opposing forces, an average markup effect and a weighting

effect. This finding is not new (King and Wolman 1999 and Woodford 2003, Chapter 6). However,

this exercise helps explains the main mechanisms at work and sets the stage for the analysis of optimal

monetary policy in richer environments where one effect may dominate the other.

2.1 A simple formula for the optimal inflation rate

Consider a standard New Keynesian model without capital, as outlined for example in Galí (2008).

The dynamics of the economy can be described by a Euler equation (1), an equation equating labor

supply and labor demand (2), a resource constraint (3), as well as equations describing the price-setting

behavior of firms, the behavior of monetary policy, and the dynamics of a technological factor Zt.

βEt
1 +Rt

Πt+1

Uc(Ct+1)

Uc(Ct)
= 1 (1)

vL(Lt)

Uc(Ct)
= mctFL(Lt) (2)

F (Lt)

st
= Ct (3)

β is the discount factor of households, Rt is the nominal interest rate set by the central bank, Πt

is gross inflation, Ct is consumption, Lt is the number of hours worked, mct is the marginal cost

of firms, and st is a wedge arising from the presence of costly price adjustment. Household utility

depends positively on consumption and negatively on the number of hours supplied in a separable way

U(Ct, Lt) = U(Ct)− v(Lt). Firms produce with labor according to the production technology F (Lt).

In what follows, I assume the following functional forms for analytical convenience; F (Lt) = ZtLt,

U(Ct) = log(Ct), and v(Lt) = χ
L1+ϕ

t

1+ϕ , where ϕ is the inverse of the Frisch elasticity of labor supply

and χ is a scaling factor. Depending on the model of price-setting behavior under consideration, the

resource costs of inflation st and marginal cost mct are potentially functions of all past, current, and
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future inflation rates

mct = Ω(Πt−i, ...,Πt, ..., EtΠt+i) (4)

st = Υ(Πt−i, ...,Πt, ..., EtΠt+i) (5)

where equation (4) is the Phillips curve of the model, Ω and Υ depend on the price-setting model, and

i ∈ N+.

We are now in a position to derive a simple formula that relates the optimal inflation rate to the

discounted effects of inflation on marginal costs and on resource costs. I consider the problem of a

monetary authority acting under commitment and look at the steady state to which it would like to

converge in the long run. In this scenario, the central bank chooses a path {Rt}∞t=0 in order to maximize

intertemporal utility E0

∑∞
t=0 ξ

tU(Ct, Lt) subject to the constraints of the competitive economy, where

the social discount factor ξ may differ from the household discount factor β1. The constraints to the

maximization problem are equations (1), (2), (3), (4), and (5). The problem can be simplified in

several ways. First, note that it is possible to use equations (2) and (3) to solve for consumption Ct

and hours Lt as a function of mct and st

Lt =

[
mctst
χ

] 1
1+ϕ

(6)

Ct = Zt

[
mct
χ

] 1
1+ϕ

s
− ϕ

1+ϕ

t (7)

Second, mct and st are potentially functions of all past, present, and future inflation rates. This

implies, through equation (1), that choosing a sequence {Rt}∞t=0 is equivalent to choosing a sequence

for inflation {Πt}∞t=0. Thus, the Ramsey problem amounts to choosing {Πt}∞t=0 to maximize the

following objective function

E0

∞∑
t=0

ξt

{
log

[
Zt

[
mct
χ

] 1
1+ϕ

s
− ϕ

1+ϕ

t

]
− mctst

1 + ϕ

}
(8)

1In such a setting with a single representative household, a natural objective for the planner would be to maximize the
lifetime utility of this representative household E0

∑∞
t=0 β

tU(Ct, Lt). The assumption ξ 6= β may thus seems unrealistic,
however, note that it is simply made for expositional purposes as it helps shed light on the main mechanisms at work.
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where the links between st, mct, and inflation rates in different periods are given by equations (4) and

(5). The first-order condition of this problem can be expressed as

E0

{ ∞∑
h=−t

[
mc−1

t+h − st+h

](
ξt+h ∂mct+h

∂Πt

)
−

∞∑
h=−t

[
ϕs−1

t+h +mct+h

](
ξt+h ∂st+h

∂Πt

)}
= 0 (9)

The optimal inflation rate depends on 1) the discounted effect of current inflation on marginal costs in

all periods; 2) the discounted effect of current inflation on resource costs in all periods; and 3) weights

that are related to the degree of steady-state inefficiency. The equation makes clear that the effects

of inflation on real outcomes are dynamic and that these outcomes are assigned a different weight by

the monetary authority depending on their distance in the future. Moreover, note that in an efficient

steady state with zero inflation, both marginal costs and resources costs are constant and equal to 1,

and the first term in the equation drops out. Indeed, in such a situation, output is at its optimal level,

and the monetary authority has no incentives to influence it through marginal costs. In what follows,

I leave aside this particular case and consider that the steady state is inefficient.

2.2 A specific case: Rotemberg pricing

I now take a closer look at the elements in equation (9) when firms face deadweight costs of adjusting

prices as in Rotemberg (1982). In appendix 1, I also derive analytical formulas for the objects presented

in equation (9) when firms have an exogenous probability of being able to reset their price (Calvo 1983).

The deadweight costs of adjusting prices have the same composition as the consumption basket and are

proportional to aggregate output Ψt =
φp

2 (Πt − 1)2Yt. In such a setting, the optimal pricing condition

of firms leads to the following relationship between marginal cost and inflation

1− θ + θmct − φpΠt (Πt − 1) + βφpEtΠt+1 (Πt+1 − 1)
1− φp

2 (Πt − 1)2

1− φp

2 (Πt+1 − 1)2
= 0 (10)

where θ is the elasticity of substitution between goods. Moreover st is given by

st =
1

1− φp

2 (Πt − 1)2
(11)
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Thus, with Rotemberg pricing, st is a function of Πt, and mct is a function of Πt and EtΠt+1. Equation

(9) simplifies to

E0

{
[mc−1

t−1 − st−1]ξ
−1 ∂mct−1

∂Πt
+ [mc−1

t − st]
∂mct
∂Πt︸ ︷︷ ︸

Λt

− [ϕst +mct]
∂st
∂Πt︸ ︷︷ ︸

Γt

}
= 0 (12)

where Λt is the effect of inflation on utility operating through marginal cost and Γt is the effect of

inflation on utility operating through the resource costs of price adjustment. In steady state, they are

equal to

Λ =
[
mc(Π)−1 − s(Π)

] φp

θ

[(
β

ξ
− 1

)
(1− 2Π) +

(
1− 1

ξ

)
β

φpΠ(Π− 1)
2

1− φp

2 (Π− 1)2

]
(13)

Γ =
[
ϕs(Π)−1 +mc(Π)

] φp(Π− 1)[
1− φp

2 (Π− 1)2
]2 (14)

where the absence of time subscripts denotes steady-state values and the notations mc(Π) and s(Π)

indicate that steady state marginal costs and resource costs are functions of inflation through equations

(10) and (11). Resource costs depend only on current inflation and are minimized when inflation is

equal to zero (Π = 1). More interestingly, the discounted effect of current inflation on past and present

marginal costs depends on the ratio of the social discount factor ξ and the discount factor of the

private sector β. When the two are equal, Λ = 0 when Π = 1. This result can be understood by

considering the unweighted effect of current inflation on the sum of past and present marginal costs
∂mct−1

∂Et−1Πt
+ ∂mct

∂Πt
. In steady state, it is equal to

(1− β)
φp

θ
(2Π− 1)

Since adjusting prices is costly, firms do not pass on the entirety of movements in marginal costs

to prices, and current inflation is associated with a reduction in markups. According to the same

logic, expected future inflation leads firms to set higher markups in order to minimize future price

adjustments costs. However, these effects are asymmetric. Since firms discount the future with factor

β, higher inflation in t has a larger positive effect on marginal cost at time t than a negative effect at

time t − 1. In other words, the model features a positive long-run relationship between inflation and

marginal cost, as can be seen from the above expression. These outcomes, which happen in successive
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periods, are weighted differently by the Ramsey planner. Events occurring at time t − 1, which are

closer in the future, receive a higher weight than events occurring at time t. When social and private

discount rates are equal, this weighting effect fully offsets the effect of inflation on average markups,

and the effect of inflation on the discounted sum of markups is equal to zero. The inflation rate is then

set equal to zero in order to minimize resource costs. However, when social and private discount rates

differ, one effect dominates the other, and the optimal inflation rate is different from zero. This can

be seen in figure 1, which plots Λ and Γ for different values of the ratio ξ/β.

When ξ = β, Λ is equal to zero when Π = 1 (figure 1, first panel). In that case, the monetary authority

seeks to maximize the lifetime utility of households, and zero inflation is optimal. This is the standard

result from the literature. When ξ = 1, the planner gives an equal weight to outcomes happening in

different periods. In the absence of any weighting effect, Λ is positive for a large range of values of Π

and the optimal inflation rate is positive (figure 1, second panel). In the third case, ξ is lower than β.

The monetary authority now puts a larger relative weight on the adverse effects of inflation happening

before time t than on its beneficial effects happening at time t; Λ is negative for a large range of values

of Π, and the optimal inflation rate is negative (figure 1, third panel).

3 Optimal long-run inflation in a New Keynesian model with a

perpetual youth structure

In order to build intuition, the preceding analysis focused on a simple model and imposed the hetero-

geneity in discount factors in an exogenous manner. I now develop a model in which this heterogeneity

arises endogenously. I incorporate an overlapping generation structure, as in Blanchard’s (1985) and

Yaari’s (1965) perpetual youth model, in the simple New Keynesian model of section 2. As empha-

sized in the introduction, such a framework has been used before for different purposes. Therefore, the

novelty does not lie in the model itself but in the fact that I solve for the steady state of the economy

under the Ramsey optimal monetary policy and show that it features a positive inflation rate.
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3.1 Model

3.1.1 Households

In every period j, a new cohort is born with mass γ, and each cohort has a constant probability of

dying γ, which does not depend on j. The budget constraint for members of cohort j is given by

Cj,t +

∫ 1

0

Qt(i)Sj,t(i)di+
Bj,t

Pt (1 +Rt)
≤ 1

1− γ

[
Bj,t−1

Pt
+

∫ 1

0

(Qt(i) +Dt(i))Sj,t−1(i)di

]
+

Wt

Pt
Lj,t

(15)

where Sj,t(i) is the number of shares issued by firm i and bought by individuals of cohort j. These

shares offer (real) dividends Dt(i), and their real price is Qt(i). Bj,t are bonds that promise a unit of

currency tomorrow and cost (1 +Rt)
−1 today. As in Blanchard (1985), households enter an annuity

contract in which the fraction γ of cohort members dying in each period leaves its wealth to those

remaining alive. Cj,t and Lj,t are consumption and labor supply for cohort j; Wt and Pt are nominal

wages and the price level in period t. The expected lifetime utility for an individual of cohort j is

Ej

∞∑
t=j

(β(1− γ))
t−j

[log(Cj,t) + χlog(1− Lj,t)] (16)

where β is the subjective discount factor of households. The future is discounted at the rate β(1− γ)

to take into account the probability of dying. The first-order conditions for an optimum include the

budget constraint (15) holding with equality as well as two intertemporal conditions for shares and

bonds and an intratemporal condition for the optimal choice of consumption and hours worked

Qt(i) = βEt
Cj,t

Cj,t+1
(Qt+1(i) +Dt+1(i)) (17)

βEt
Cj,t

Cj,t+1

1 +Rt

Πt+1
= 1 (18)

χ
Cj,t

1− Lj,t
=

Wt

Pt
= wt (19)
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where Πt =
Pt

Pt−1
is the gross inflation rate between periods t− 1 and t. The stochastic discount factor

between t and t+ 1, conditional on surviving, is

βt,t+1 = β
Cj,t

Cj,t+1
(20)

This discount factor is common to all cohorts as can be seen from equation (18). Following Piergallini

(2006), Castelnuovo and Nisticò (2010), and Nisticò (2012), one can derive from these equations a

policy function for consumption

Cj,t =
1− β(1− γ)

1 + χ

[
Ωj,t + Et

∞∑
s=0

βt,t+s(1− γ)swt+s

]
(21)

where Ωj,t =
1

1−γ

(
Bj,t−1

Pt
+
∫ 1

0
(Qt(i) +Dt(i))Sj,t−1(i)di

)
is financial wealth held by cohort j at the

beginning of period t. Households of each cohort consume out of financial and human wealth with

propensity 1−β(1−γ)
1+χ , where human wealth is equal to the discounted sum of expected future labor

income.

Aggregation

Consider any variable Xj,t for a cohort born at time j and define the aggregate variable

Xt ≡
t∑

j=−∞
γ(1− γ)t−jXj,t (22)

Xt is a weighted average of the individual Xj,t, where the weights are given by the mass of each

cohort γ(1− γ)t−j . The aggregation of the labor supply condition (19) and of the policy function for

consumption (21) implies
χCt

1− Lt
= wt (23)

Ct =
1− β(1− γ)

1 + χ

[
Ωt + Et

∞∑
s=0

βt,t+s(1− γ)swt+s

]
(24)

Aggregating equation (20) gives

Etβt,t+1

(
Ct+1

1− γ
− γ

1− γ
Ct+1,t+1

)
= βCt (25)
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Since new cohorts are born with zero financial wealth, we have that

Ct,t =
1− β(1− γ)

1 + χ

[
Et

∞∑
s=0

βt,t+s(1− γ)swt+s

]
(26)

Using equation (24), this implies

Ct+1,t+1 = Ct+1 −
1− β(1− γ)

1 + χ
Ωt+1 (27)

Substituting this expression back in (25), we finally obtain

Ct =
1

β
Etβt,t+1Ct+1 +

γ

1− γ

1− β(1− γ)

β (1 + χ)
Etβt,t+1Ωt+1 (28)

When γ = 0, we have the familiar Euler equation of the representative agent case. When γ 6= 0, a

wedge related to financial wealth Ωt+1 appears. Indeed, while standard Euler equations hold at the

cohort level—see equation (18)—this is no longer true in the aggregate. Expected consumption is not

only related to current consumption, interest rates, and expected inflation since 1) a proportion (1−γ)

of agents in each cohort will die between t and t+ 1 and 2) new agents will appear in t+ 1 for which

past Euler equations do not hold. Since these new households are born without any financial wealth,

their t+ 1 consumption is lower than the consumption of surviving households by a factor depending

on the amount of financial wealth held by the latter. This explains the presence of the Ωt+1 term in

equation (28).

3.1.2 Firms

Firms produce according to the technology Yt(i) = ZtLt(i) and face quadratic price adjustment costs

Φt(i) =
φp

2 ( Pt(i)
Pt−1(i)

−1)2Yt. These costs have the same composition as the aggregate consumption basket

and are proportional to aggregate output. Since firms belong to households, they use the household

stochastic discount factor when evaluating future profit flows. They choose Pt+s(i) to maximize

Et

∞∑
s=0

βt,t+s

[
Pt+s(i)

Pt+s
Yt+s(i)− wt+sLt+s(i)−

φp

2

(
Pt+s(i)

Pt+s−1(i)
− 1

)
2Yt+s

]

subject to Yt+s(i) = Zt+sLt+s(i) and Yt+s(i) =
(

Pt+s(i)
Pt+s

)−θ

Y D
t+s, where Y D is aggregate demand. In

equilibrium, all firms choose the same price. We obtain a nonlinear Phillips curve relating marginal
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cost to inflation

1− θ + θ
wt

Zt
− φpΠt(Πt − 1) + Etβt,t+1φ

pΠt+1(Πt+1 − 1)
Zt+1Lt+1

ZtLt
= 0 (29)

3.1.3 Resource constraint

We normalize the number of shares to one. Aggregate dividends are given by

Dt =

∫ 1

0

Dt(i)St−1(i)di = Yt − wtLt −
φp

2
(Πt − 1)2Yt (30)

Moreover, there is zero net supply of bonds in equilibrium (Bt = 0). After aggregating the budget

constraints of households and substituting the expression for dividends, we obtain

Ct = ZtLt

[
1− φp

2
(Πt − 1)2

]
(31)

3.1.4 Equilibrium conditions

A competitive equilibrium is a set of plans {wt, Ct, Lt,Πt, βt,t+1, Qt,Ωt, Rt} satisfying the aggregate

labor supply condition (23), the aggregate Euler equation (28), the Phillips curve (29), the aggregate

resource constraint (31), as well as the following equations

Qt = Etβt,t+1

(
Qt+1 + Zt+1Lt+1

(
1− φp

2
(Πt+1 − 1)2

)
− wt+1Lt+1

)
(32)

Ωt = Qt + ZtLt

(
1− φp

2
(Πt − 1)2

)
− wtLt (33)

Et
Rt

Πt+1
βt,t+1 = 1 (34)

given specifications for the exogenous process Zt and monetary policy Rt and where Qt =
∫ 1

0
Qt(i)di.

Equation (32) is obtained by integrating equation (17) over the continuum of firms and substituting

the expression for dividends (30). Similarly, equation (33) is obtained by aggregating cohort-specific

wealth levels and substituting the expression for dividends (30). Equation (34) simply defines the

household stochastic discount factor as the inverse of the real interest rate. Given these aggregate
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dynamics, cohort-specific consumption levels are given by equation (21) and

Ωj,t =
Ωj,t−1 + wt−1 − Cj,t−1(1 + χ)

βt−1,t(1− γ)

where Ωj,j = 0. Cohort-specific labor supply decisions are then given by equation (19).

3.1.5 Inflation and steady state outcomes

I now analyze the effects of inflation on steady-state outcomes. I first consider aggregate variables,

notably the wage and the real interest rate. The Phillips curve gives

w =
θ − 1

θ
+

φp

θ
Π(Π− 1)

(
1− β̃

)
(35)

where β̃ is the steady-state value of the stochastic discount factor. For a given level of the real interest

rate (or equivalently, of the stochastic discount factor), the wage is clearly increasing in the level of

inflation. Because of the presence of discounting in the Phillips curve, an increase in the inflation rate

is associated with a decline in markups and an increase in marginal costs which, in steady state, are

equal to wages. The aggregate Euler equation can be used to obtain an expression for the stochastic

discount factor

β̃ = β

[
1 +

γ

(1− γ)

(1− β(1− γ))

(1 + χ)

Ω

C

]−1

(36)

Two different cases arise. When β̃ = β, households have no incentive to save, and aggregate wealth

Ω is equal to zero. In this situation, all cohorts consumption and labor supply decisions are identical,

and the dynamics of the economy are similar to that of the standard New Keynesian model. When

β̃ < β, the real interest rate is larger than the household discount rate, and households save a part of

their income in equilibrium. As a result, households accumulate wealth over their lifetime and cohorts

differ in their consumption and labor supply choices. I will focus on this second case in the rest of

the analysis. In that situation, the steady-state real interest rate is not invariant to inflation. Indeed,

inflation erodes markups, which causes labor demand to expand and hours worked to increase, and leads

to larger costs of adjusting prices, which causes dividends and wealth to fall. Aggregate consumption

is a hump-shaped function of inflation; at low inflation rates, the increase in hours worked dominates

the increase in adjustment costs and consumption increases; at higher inflation rates, the reverse

happens. In the numerical applications considered in this paper, wealth always declines faster than
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consumption, and the ratio Ω
C declines with inflation. This implies that the steady-state real interest

rate is a decreasing function of the inflation rate. However, this effect is quantitatively very small.

Through aggregate variables, inflation has an effect on the distribution of consumption and hours

worked across cohorts. Consider the case of newly born households of age zero. Their steady-state

consumption level moves with inflation according to

∂C0

∂Π
=

1− β(1− γ)

1 + χ

 ∂w
∂Π

(
1− β̃ (1− γ)

)
+ ∂β̃

∂Πw (1− γ)(
1− β̃ (1− γ)

)2


which is unambiguously positive given that ∂w
∂Π > 0 and ∂β̃

∂Π > 0. Households of age zero consume a

given fraction of their permanent labor income. The latter increases with inflation both because wages

increase and because future labor income is discounted less heavily. After using the individual Euler

equations of households to express consumption of age h cohorts as a function of C0, we can similarly

derive the effect of inflation on the steady-state consumption level of age h cohorts

∂Ch

∂Π
=

(
β

β̃

)h
(
∂C0

∂Π
− ∂β̃

∂Π
h
C0

β̃

)

Given that ∂β̃
∂Π is small, ∂Ch

∂Π is initially positive. However, as h increases, the second term starts

to dominate, and ∂Ch

∂Π turns negative. This second effect comes from the fact that inflation reduces

the return to savings and the financial wealth of households. The older households are, the larger

the decrease in financial wealth. At a certain threshold h̄, this decrease becomes larger than the

increase in permanent labor income captured by the term ∂C0

∂Π . Since the propensity to consume out of

financial wealth and labor income is identical, it follows that the consumption of cohorts h ≥ h̄ declines

with inflation. Inflation thus redistributes consumption away from old households and towards young

households.

Note that, just as in the standard New Keynesian model of section 2, the effects of inflation on real

outcomes operate through markups and the deadweight cost of adjusting prices. However, because of

the heterogeneity among households, movements in these two variables have more widespread conse-

quences in this framework.
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3.2 The optimal long-run inflation rate

I now solve for the optimal inflation rate. In order to do so, I first spend some time discussing how

the planner aggregates the utilities of different generations in section 3.2.1. This sheds some light on

the distortions arising in the decentralized equilibrium that can be partially offset through inflation.

In section 3.2.2, I solve analytically for the steady state of the economy under the Ramsey optimal

monetary policy. Section 3.2.3 provides a numerical application.

3.2.1 Welfare and the optimal allocation

I denote by ξ the social discount factor according to which the planner discounts generations. In this

overlapping generation context, the planner’s objective is the sum of two components. The first is the

expected lifetime utilities of generations that are yet to be born. The second is the sum of expected

flow utilities, over the remainder of their lifetimes, of existing generations. As demonstrated by Calvo

and Obstfeld (1988), in order for the optimal allocation to give rise to time-consistent consumption

plans, the expected utilities of each generation needs to be discounted from the perspective of their

birth date. This implies that social welfare at time 0, W0, is equal to

W0 = E0

∞∑
j=1

ξj
∞∑
t=j

γ (β (1− γ))
t−j

(log(Cj,t) + χlog(1− Lj,t))

+E0

0∑
j=−∞

ξj
∞∑
t=0

γ (β (1− γ))
t−j

(log(Cj,t) + χlog(1− Lj,t)) (37)

where the first term is the expected lifetime utilities of future generations, and the second term is the

appropriately discounted expected sum of future utilities flows of existing generations. This equation

makes clear that the planner cares about the lifetime utility of each cohort. When ξ = 1, generations

are treated equally, and the instantaneous utility flow of an individual of age h is discounted similarly

regardless of the current date. When ξ < 1, the lifetime utility of older cohorts is weighted more heavily

in the objective function, a practice Ramsey (1928) would have deemed to be “ethically indefensible”.

Equation (37) can be reformulated in a more compact way by changing the order of summation

W0 = E0


∞∑
t=0

ξt
t∑

j=−∞
γ

(
β (1− γ)

ξ

)t−j

(log(Cj,t) + χlog(1− Lj,t))

 (38)
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We are now in a position to derive the first-best allocation. The planner chooses Cj,t and Lj,t in order

to maximize (38) subject to the aggregate resource constraint

t∑
j=−∞

γ (1− γ)
t−j

Cj,t = Zt

 t∑
j=−∞

γ (1− γ)
t−j

Lj,t

 (39)

The first-order conditions imply
χCj,t

1− Lj,t
= Zt (40)

1

Cj,t
=

β

ξ

1

Cj−1,t
(41)

A comparison of a steady-state version of these conditions with the ones arising in the decentralized

equilibrium sheds light on the inefficiencies that the monetary authority can attempt to correct for

through inflation. First, a static distortion arises from the presence of monopolistic competition.

This can be seen by comparing equation (19) with equation (40). In a zero-inflation steady state,

w = θ−1
θ . Monopolistic competition introduces a wedge between the marginal rate of substitution

between consumption and leisure, equal to χCj

1−Lj
, and the marginal productivity of labor, equal to

1. Since w is an increasing function of steady-state inflation, the monetary authority can partially

correct for this distortion by increasing the inflation target. Second, another distortion arises from the

distribution of consumption across cohorts. This can be seen by comparing the steady-state versions of

equations (20) and (41). In steady state, all agents make similar decisions at the same age, and these

equations can be written respectively as β

β̃

Ch

Ch+1
= 1 and β

ξ
Ch

Ch+1
= 1, where h is age. In the decentralized

equilibrium, since the real interest rate is larger than the subjective rate of time preference, agents

choose an increasing profile for consumption over their lifetime. Whether this is optimal or not depends

on the exact value of ξ2. As long as ξ > β̃, young individuals consume too little compared to older

ones in the decentralized equilibrium. As shown before, an increase in steady-state inflation can

partially offset this distortion as it boosts labor income, on which the young disproportionately rely,

and depresses capital income, which is the main source of income for older cohorts. These benefits

have to be balanced with the deadweight costs of adjusting prices, which reduce the share of output
2When ξ = 1, a decreasing age-consumption profile is optimal as utility flows experienced when young enter with

a greater weight in lifetime utility. Such a decreasing consumption profile is also optimal for ξ > β. This conclusion
is reversed whenever ξ < β. While private agents still exhibit a preference for the present, the planner now puts a
larger relative weight on older generations. As a consequence, allocating more consumption to older generations becomes
optimal.
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available for consumption, as can be seen in equation (31).

3.2.2 Ramsey optimal monetary policy

The central bank chooses a path {Rt}∞t=0 to maximize social welfare (38) subject to the constraints

of the competitive economy. These constraints can be subdivided in three parts. A first set of con-

straints describes the evolution of aggregate variables; the Phillips curve (29), and the definition of

dividends (30)3. A second set of constraints describes the evolution of cohort-specific variables; the

Euler equations for shares (17) and bonds (18), the intratemporal conditions for the optimal choice of

consumption and hours worked (19), and the individual budget constraints (15) holding with equality.

Each of these equations is cohort-specific and therefore appears j times. A third set of constraints

consists of the bridge equations between aggregate and cohort-specific variables and is given in generic

form by Xt =
∑t

j=−∞ γ(1− γ)t−jXj,t.

In order to be able to solve this problem, I now simplify it in several ways. This procedure is described

in detail in appendix 2. First, as in section 2, the problem can be seen as one in which the central

bank directly chooses the allocation. Once the paths for the stochastic discount factor and inflation

are known, the Euler equation for bonds can be used to back out the path of nominal interest rates

consistent with this allocation. Second, the system is consolidated through repeated substitutions and

by getting rid of all cohort-specific constraints and variables. In the end, the Ramsey planner chooses

the sequence {Ct,Πt, wt, βt,t+1}∞t=0 to maximize the following Lagrangian

L =

∞∑
t=0

ξt(− χγ

1− β(1−γ)
ξ

log(wt) + (1 + χ)

t∑
j=−∞

γ

(
β (1− γ)

ξ

)t−j
[
log

(
wj +

∞∑
h=1

βj,j+h(1− γ)hwj+h

)
− log (βj,t)

]

+λ1t

[
θ − 1

θ
+

φp

θ
Πt(Πt − 1)− βt,t+1

φp

θ
Πt+1(Πt+1 − 1)

1− χ
wt+1

Ct+1

1− χ
wt

Ct
− wt

]

+λ2t

[(
1− φp

2
(Πt − 1)2

)(
1− χ

wt
Ct

)
− Ct

]

+λ3t

 t∑
j=−∞

γ(1− γ)t−j β
t−j

βj,t

(
wj +

∞∑
h=1

βj,j+h(1− γ)hwj+h

)
− 1 + χ

1− β(1− γ)
Ct

)
3The other aggregate equilibrium conditions listed in section 3.1.4 are not directly included but appear implicitly

through the cohort-specific conditions and the bridge equations between aggregate and cohort-specific variables.
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where λ1t, λ2t and λ3t are the Lagrange multipliers associated with the three constraints. I assume

that the current policy has been in place for a long time or, in other words, that monetary policy is

conducted from a timeless perspective (Woodford 2003). I therefore compute first-order conditions in

t = t1, where t1 is arbitrarly large, and ignore the transition path from time 0 to time t1. Furthermore, I

abstract from uncertainty in the analysis and, for ease of notation, drop expectation operators. While

the infinite sums over all generations introduce some complications when computing the first-order

conditions, they also have a side benefit. By using formulas for infinite geometric series, one can derive

analytical expressions for the steady-state version of these first-order conditions provided that some

restrictions on β̃, β, ξ and γ are verified. These derivations are presented in appendix 2, where I also

prove the following result analytically.

Proposition: In a model with monopolistic competition, quadratic price adjustment costs, and a

perpetual youth structure, optimal inflation in the Ramsey equilibrium is different from zero in steady

state unless the social discount factor coincides with the steady-state value of the discount factor used

by firms when evaluating future profit flows.

The first-order condition with respect to inflation bears some similarities with the simple formula for

the optimal inflation rate derived in section 2. In steady state, it is equal to

λ1
φp

θ
(2Π− 1)

(
1− β̃

ξ

)
− λ2φ

p (Π− 1)L = 0 (42)

The first term is the marginal benefits of inflation. The multiplier λ1 captures the effect of movements

in marginal costs on social welfare, and φp

θ (2Π− 1) (1 − β̃/ξ) is the discounted effect of inflation on

marginal costs. The second term is the marginal costs of inflation. The multiplier λ2 captures the

effect of movements in aggregate consumption on social welfare, and −φp (Π− 1)L is the effect of an

increase in inflation on aggregate consumption operating through the costs of price adjustment4. The

precise values of λ1 and λ2 depend on Π and on the structure of the economy, notably the extent of

household heterogeneity. For inflation to be optimal, marginal costs and benefits have to be equal.

There are two particular situations in which this happens for a net inflation rate of zero—that is, for

4The term φp

θ
(2Π− 1) (1 − β̃/ξ) is computed by holding other variables in the Phillips curve fixed. Inflation may

also have an indirect effect on marginal costs through these variables. Similarly, −φp (Π− 1)L is computed by holding
L fixed. Inflation also influences aggregate consumption indirectly through L. These indirect effects are captured by
the multipliers λ1 and λ2. This, of course, has the disadvantage of making equation (42) less clear-cut to interpret than
equation (9).
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Π = 1. In the first case, the elasticity of substitution between goods θ tends toward infinity. Although

the steady state is not efficient (β̃ tends toward β but ξ may still differ from β), the monetary authority

loses its leverage over markups, and the marginal benefits of inflation tend toward zero. In the second

case, θ is finite and ξ is equal to β̃. The effects of inflation on markups are dynamic, and the planner

weights them according to their distance in the future. When ξ is equal to β̃, this weighting scheme

offsets exactly the effect of inflation on average markups. In both cases, since a positive inflation

target does not bring any benefits, the central bank chooses an optimal inflation rate of zero in order

to minimize the deadweight costs associated with price adjustments.

In practice, no specific criterion calls for the social discount factor to be exactly equal to the stochastic

discount factor prevailing in the zero-inflation steady state. Thus, in the presence of monopolistic

competition, the optimal inflation rate will generally be different from zero. The following section

considers a baseline calibrated version of the model and solves for numerical values of the optimal

inflation rate as a function of key parameters.

3.2.3 Numerical analysis

The elasticity of substitution between goods θ is set equal to 6, which implies a markup of 20 percent

in the zero-inflation steady state. The price adjustment cost parameter φp is chosen according to the

following logic. The linearized Phillips curve of the model is observationally equivalent to the one

derived under Calvo pricing, and structural estimates of New Keynesian models find an elasticity of

inflation with respect to marginal cost ω of 0.5 (Lubik and Schorfheide 2004). In my model, ω = θ−1
φp ,

which implies that φp = 10. Alternatively, assuming an average contract duration of 4 quarters,

the coefficient ω under Calvo pricing would be equal to 0.0846. This implies φp = 59. I choose

an intermediate value φp = 40. I also experiment with other values as a robustness check. The

household discount factor β is fixed at 0.995. The key parameter driving a wedge between β and the

steady-state stochastic discount factor is the turnover rate γ. If one interprets the model literally, γ

represents an average probability of dying for individuals, which is likely to be very low at a quarterly

frequency. Alternatively, one can see the perpetual youth model as capturing transitions in and out

of hand-to-mouth status and other forms of wealth resetting such as household default. Following this

interpretation, Del Negro et al. (2015) use values of γ ranging from 0.03 to 0.06. In the model of

Castelnuovo and Nisticò (2010), this turnover rate is estimated to be much higher at about 0.13. For

β < 1, such high values for γ imply implausibly large values for the steady-state real interest rate. I
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thus choose the lowest value considered in the literature, γ = 0.03, which corresponds to a steady-state

real interest rate of 4.5 percent. Finally, the Frisch elasticity of labor supply depends on the level of

hours worked Lt. I calibrate χ so that it is equal to 2 in a zero-inflation steady state. This implies

that steady-state hours are equal to 1/3.

Figure 3 plots the annualized optimal inflation rate as a function of the social discount factor ξ. When

the central bank evaluates the lifetime utilities of different generations according to the household

discount factor, the deviations from price stability are modest with an optimal inflation rate of 0.8

percent. As the relative weight on old generations decreases—that is, as ξ increases— the optimal

inflation rate increases. This happens for two reasons. First, the discounted effect of inflation on

marginal costs becomes larger as the gap between ξ and β̃ increases. Second, since an increase in

marginal cost redistributes consumption from the old to the young, raising the inflation target becomes

more interesting as the weight on young generations in social welfare increases—λ1 in equation (42)

increases. When the monetary authority treats all generations equally, following Ramsey’s (1928)

suggestion, the optimal inflation rate reaches 3.2 percent. Inversely, for lower values of ξ, the optimal

inflation rate is closer to zero both because the gap between ξ and β̃ shrinks and because using inflation

to erode markups becomes less beneficial as the relative weight on young generations decreases. When

ξ = β̃, long-run price stability is optimal.

I now adopt ξ = 1 as my baseline calibration and study the robustness of the results to two parameters,

the degree of price stickiness φp and the elasticity of substitution between goods θ. Figure 4 shows

that the optimal inflation rate is to a large extent independent of the degree of price stickiness. The

rationale for this result is as follows. An increase in φp has two opposing effects. On the one hand, it

gives monetary policy more leverage over markups, thereby raising the marginal benefits of inflation.

On the other hand, it increases the deadweight cost of adjusting prices for a given level of inflation,

thereby raising the marginal costs of inflation. These two effects broadly seem to offset each other.

Figure 5 shows that the optimal inflation rate is a decreasing function of the elasticity of substitution

between goods. A higher θ is associated with a lower steady state markup and a weaker relationship

between inflation and wages, as can be seen from equation (35). Thus, the marginal benefits of inflation

decrease with θ, and consequently, so does the optimal inflation target.
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4 Two examples from the existing macroeconomic literature

The preceding section provided a novel application of the general property outlined in section 2. This

section shows that this property is also relevant to understand some existing results in the literature.

As demonstrated analytically in the appendix, in models with firm entry and exit or in environments

with labor market frictions and costly nominal wage adjustment, the optimality of a non-zero inflation

rate arises from differences in the way profit and utility flows are discounted.

4.1 Firm entry and exit

Bilbiie et al. (2014) study optimal monetary policy in a sticky-price model with endogenous firm entry

and product variety and find that deviations from long-run price stability are generally desirable. In

the model, each firm produces a different good, and consumers exhibit a taste for good variety. Firm

entry takes place subject to sunk costs in the expectations of future monopoly profits, and the presence

of imperfect price adjustment gives rise to a Phillips curve relating markups to inflation. The central

bank can therefore use its leverage over markups to manipulate entry and align the number of varieties

with the benefits of variety to consumers. When those benefits fall short of the incentives to create

new varieties, the monetary authority engineers positive inflation to reduce markups and firm entry.

When the number of varieties is too low, the monetary authority creates deflation in order to increase

markups and the incentives to create new varieties. In this environment, firms exit the market with

exogenous probability δ in each period. Consequently, the effective discount factor appearing in the

Phillips curve in steady state differs from the household discount factor by a factor 1− δ depending on

this mortality rate. Appendix 3 derives the Ramsey problem faced by the monetary authority for an

arbitrary value of the social discount factor ξ (which may therefore differ from the household discount

factor β) and shows that discount factor heterogeneity is key in generating deviations from long-run

price stability. In Bilbiie et al., ξ = β, and the long-run optimal inflation rate is different from zero

unless the steady state is efficient. They argue that a plausible calibration of the model justifies an

optimal inflation target of 2 percent or higher. In the appendix, I show that when ξ = β (1− δ)—that

is, when the social discount factor is equal to steady state effective discount factor used by firms

when evaluating profit flows—optimal long-run inflation is equal to zero regardless of the degree of

steady-state inefficiency. The logic behind this result is similar as in section 2. In the model, the

effects of inflation on markups are dynamic. Higher inflation at time t reduces markups and entry

at time t but increases markups and entry before time t, insofar as it is expected in advance. These
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consequences happening in different periods are assigned a different weight by the Ramsey planner.

When ξ = β (1− δ), this social weighting effect perfectly offsets the effect of inflation on average

markups. The discounted effects of inflation on markups are then equal to zero, and the central bank

chooses an inflation rate that minimizes the costs of price stickiness.

4.2 Labor market frictions and nominal wage stickiness

I have thus far focused on environments with monopolistic competition in the goods market and price

stickiness. However, as long as the effects of inflation on markups are dynamic, there is reason to think

that the property described in section 2 can apply to cases with imperfect competition and nominal

stickiness in other markets. In order to illustrate this, I now consider in appendix 4 a New Keynesian

model with search and matching frictions in the labor market and costly nominal wage adjustment.

In the model, firms and workers bargain over nominal wages, and firms have to incur costs to adjust

nominal wages. In steady state, the bargaining power of workers is too high relative to its efficient level,

and job creation is inefficient. Because of labor market turnover, the effective discount factor used

during wage negotiations differs from the household stochastic discount factor by a factor depending

on the separation probability from employment ρ. As already noted by Arseneau and Chugh (2008)

in a similar model, this gives monetary policy some leverage over the wage markup. By increasing

inflation, the central bank can reduce the bargaining power of workers—that is, reduce the wage

markup—and boost job creation. However, as in the other frameworks considered in this paper, the

effects of inflation are dynamic. Higher inflation at time t reduces the bargaining power of workers at

time t and increases the bargaining power of workers at time t− 1 through expected inflation. These

outcomes are weighted differently by the Ramsey planner. Appendix 4 derives the Ramsey problem

faced by the monetary authority. It shows that the optimal long-run inflation rate is equal to zero in

the now familiar case where the social discount factor ξ is equal to the steady-state discount factor used

by firms and workers in wage negotiations β (1− ρ). In that case, the social weighting effect offsets

exactly the effect of inflation on the average wage markup. Whenever ξ > β (1− ρ), the discounted

effect of inflation on the wage markup is positive, and as a result, so is the optimal inflation target. In

a baseline calibrated version of the model, which also includes monopolistic competition in the goods

market and sticky prices and where ξ = β, the optimal inflation rate is equal to 1.6 percent in annual

terms. Interestingly, this figure rises with the degree of indexation of nominal wages to past inflation.
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Two additional elements are worth emphasizing. First, the presence of labor market frictions is essential

to obtaining this result. If the labor market was instead characterized by monopolistic competition

and if all labor adjustment took place along the intensive margin, as in for example Erceg et al. (2000),

the optimal inflation rate would be equal to zero. In that case, the effective discount factor appearing

in the wage Phillips curve in steady state does not differ from the household discount factor. Second,

Carlsson and Westermark (2016) similarly argue that the interaction of labor market frictions and

nominal wage stickiness generates an optimal inflation rate that is significantly positive. However, the

mechanism through which this happens is different. In their paper, nominal wages are renegotiated

infrequently, and newly hired workers join the existing nominal wage structure within the firm. By

increasing the inflation target, the central bank can therefore decrease their real wages and boost job

creation. This channels disappears if newly hired workers negotiate wages at the time of being hired.

On the contrary, in the model developed in the appendix, the optimal long-run inflation rate is positive

even though bargaining takes places in every period. Thus, regardless of how one interprets the mixed

evidence about the flexibility of the wages of new hires (see for example Haefke et al. 2013, Stüber

2017, or Gertler et al. 2018), the combination of labor market frictions and nominal wage stickiness

seems to justify the adoption of positive inflation targets.

5 Conclusion

A large literature seeks to describe optimal monetary policy in dynamic economies featuring nominal

and real rigidities. A conclusion emerging from this literature is that the presence of price stickiness

calls for a zero long-run inflation rate. This paper challenges this conclusion. It argues that the optimal

inflation rate can be significantly positive when profits flows are discounted more heavily than utility

flows and illustrates this by studying optimal monetary policy in several environments in which such

a property arises.

In sticky-price models, the central bank can lower the long-run level of markups by engineering a

positive rate of inflation but incurs resource costs or costs related to price dispersion. This suggests

that the inflation rate should be set to a slightly positive value in order to strike a balance between these

costs and benefits. However, the problem faced by the monetary authority is intrinsically dynamic.

Inflation in a given period t has consequences on markups both in period t and in periods preceding

t through anticipated inflation. These real consequences of inflation are weighted differently by the
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central bank, depending on their distance in the future. When social and private discount factors are

equal, the weighting effect perfectly offsets the effect of inflation on average markups, and the optimal

long-run inflation rate is equal to zero. This is no longer true when social and private discount factors

differ. I investigate the quantitative implications of this heterogeneity in three different frameworks.

I first consider a New Keynesian model with a perpetual youth structure. In this setting, the social

discount rate, which reflects the relative weight the monetary authority places on the lifetime utilities

of various generations, need not coincide with the real interest rate, according to which firms discount

profit flows. Under the assumption that the planner treats all generations equally, following Ramsey’s

(1928) suggestion, I find that the optimal inflation rate is significantly positive at 3.2 percent per

year, although the gap between social and private discount rates is small. Second, I show that such

a heterogeneity in discount factors arises endogenously in models with firm entry and exit and in

environments with labor market frictions and another form of nominal rigidity, wage stickiness. In

both cases, it provides a rationale for moderately positive inflation targets.

The presence of discount factor heterogeneity may also call for deviations from long-run price stability

in other macroeconomic environments. As an example, consider the growing literature that incorpo-

rates household heterogeneity in New Keynesian models. In McKay et al. (2016), the presence of

uninsurable income risk and borrowing constraints gives rise to precautionary savings which push the

real interest rate below the household discount rate. In Kaplan et al. (2018), households can self-insure

by saving either in low-return liquid government bonds or high-return illiquid firm shares or capital.

This assumption leads to the presence of a sizable fraction of wealthy hand-to-mouth households, as

in the data, and implies that profit flows are discounted at a higher rate than utility flows. Finally,

another relevant example comes from the literature on financial frictions. In the model of Gilchrist

et al. (2017), firms face financial frictions while setting prices in customer markets. In reaction to an

adverse shock, they become more myopic in their decision making in order to preserve internal liquid-

ity and avoid accessing external finance. In all those cases, the effects of inflation operating through

markups should call for deviations from long-run price stability. At the same time, other frictions

present in those models may independently push the optimal inflation target in another direction.

Such an analysis is beyond the scope of this paper and is left for future research.
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Figure 1: Λ and Γ according to the value of ξ
β with Rotemberg pricing. In the first case, ξ = β = 0.99.

In the second case, ξ = 1 and β = 0.99. In the third case, ξ = 0.98 and β = 0.99. The other parameters
are calibrated as follows: φp = 40, θ = 6, ϕ = 0.5.
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Figure 2: Λ and Γ according to the value of ξ
β with Calvo pricing. In the first case, ξ = β = 0.99. In

the second case, ξ = 1 and β = 0.99. In the third case, ξ = 0.98 and β = 0.99. The other parameters
are calibrated as follows: α = 0.75, θ = 6, ϕ = 0.5.
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Figure 3: Optimal long-run inflation rate (in annual terms) according to the value of the social discount
factor in a baseline calibrated version of the New Keynesian perpetual youth model.
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Figure 4: Optimal long-run inflation rate (in annual terms) according to the degree of price stickiness
in a baseline calibrated version of the New Keynesian perpetual youth model.
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Figure 5: Optimal long-run inflation rate (in annual terms) according to the degree of monopolistic
competition in a baseline calibrated version of the New Keynesian perpetual youth model.
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Figure 6: Optimal long-run inflation rate (in annual terms) according to the degree of wage stickiness
in a baseline calibrated version of the New Keynesian model with search and matching frictions.
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Figure 7: Optimal long-run inflation rate (in annual terms) according to the degree of indexation of
nominal wages to past inflation in a baseline calibrated version of the New Keynesian model with
search and matching frictions.
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7 Appendix

7.1 Appendix 1: Optimal inflation formulas with Calvo pricing in the stan-

dard New Keynesian model

In the model of price setting based on Calvo (1983), each firms may reset its price only with probability

1 − α in any given period, independent of the time elapsed since the last adjustment. The optimal

pricing condition of firms is

pot +
θ

θ − 1
mct + Et

∞∑
s=t+1

(αβ)
s−t

(
s−t∏
i=1

Π−1
t+i

)−θ{
pot

(
s−t∏
i=1

Π−1
t+i

)
− θ

θ − 1
mcs

}
= 0 (43)

where pot =
P o

t

Pt
is the relative price chosen by firms which can reset prices, and Pt is the aggregate

price in the economy at time t. The dynamics of inflation are described by the following equation

1 = (1− α)(pot )
1−θ + αΠθ−1

t (44)

Moreover, price dispersion leads to a dispersion in the quantity of varieties produced by firms. Since

aggregate output is a concave function of the quantity of each variety, this dispersion leads to a costly

decrease in output captured by

st = (1− α) (pot )
−θ

+ αΠθ
t st−1 (45)

In this environment, st does not only depend on the time t inflation rate but also on all past inflation

rates Πt−i ∀i = N+. Symmetrically, mct depends on the time t inflation rate and on all future expected

inflation rates EtΠt+i ∀i ∈ N+. As in the case of Rotemberg pricing, we can rewrite (9) as a function

of the effect of inflation on utility operating through marginal costs Λt and the effect of inflation on

utility operating through price dispersion Γt

E0 {Λt − Γt} = 0

where

Λt =

0∑
h=−t

[
mc−1

t+h − st+h

](
ξt+h ∂mct+h

∂Πt

)
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Γt =

∞∑
h=0

[
ϕs−1

t+h +mct+h

](
ξt+h ∂st+h

∂Πt

)

After using equations (43) to (45), under the assumptions that αΠθ < 15 and t → ∞, we can find an

analytical solution for the steady state expressions of Λ and Γ (see below)

Λ =
[
mc(Π)−1 − s(Π)

] (θ − 1)

θ
po(Π)

αΠθ−2

1-αβΠθ−1

[
(1− β

ξΠ)(1− αβ
ξΠ

θ−1) + (θ − 1)(1−Π)βξ (1− αΠθ−1)
]

(1− αΠθ−1)(1− αβ
ξΠ

θ−1)

Γ =
[
ϕs(Π)−1 +mc(Π)

] θ(1− α)(po(Π))−θαΠθ−2

(1− αξΠθ)(1− αΠθ)(1− αΠθ−1)
(Π− 1)

Figure 2 plots Λ and Γ for different values of the ratio ξ/β. Several things can be learned from this

figure. First, the discounted effect of inflation on present and future price dispersion terms is equal to

zero when Π = 1. When Π < 1, an increase in inflation reduces price dispersion today and in the future

(Γ is negative). Symmetrically, when Π > 1, a decrease in inflation reduces price dispersion today and

in the future (Γ is positive). Second, the discounted effect of current inflation on past and present

marginal costs Λ is equal to zero when the social and private discount factors ξ and β are equal, and

when steady-state inflation is equal to zero. The rationale for this result is similar to the one outlined

above with Rotemberg pricing. The average markup is decreasing in current inflation, and increasing

in future expected inflation. The effect operating through current inflation tends to dominate the one

operating through anticipated inflation for low positive rates of inflation (Goodfriend and King 1997).

The average markup is indeed minimized for such a rate. However, events happening before time t

loom larger for the Ramsey planner than events happening at time t. That is, the detrimental effects

of current inflation on past markups are given a higher weight than its beneficial effects on current

markups. When social and private discount rates coincide, these average markup and weighting effects

offset each other for an inflation rate of zero.

5Even for a high value of price stickiness α = 0.8 and a high elasticity of substitution between goods θ = 11, this is
valid as long as quarterly steady-state inflation is lower than 2.05%. When α = 0.9 and θ = 11, quarterly steady-state
inflation has to be lower than 0.96%.
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Derivation of Λ

We start with the pricing condition

Et

∞∑
s=t

(αβ)
s−t Uc(Cs)

Uc(Ct)

(
Pt

Ps

)−θ

Ys

{
pot

Pt

Ps
− θ

θ − 1
mcs

}
= 0

Imposing market clearing Cs = Ys, and assuming log utility in consumption, we obtain

Et

∞∑
s=t

(αβ)
s−t

(
Pt

Ps

)−θ

pot
Pt

Ps
= Et

∞∑
s=t

(αβ)
s−t

(
Pt

Ps

)−θ
θ

θ − 1
mcs

We can express marginal cost as a function of the current period optimal price pot , future inflation

rates Πt+1,Πt+2, ..., and future marginal costs mct+1,mct+2, ...

mct =
θ − 1

θ
potEt

[
1 + αβΠθ−1

t+1 + (αβ)2(Πt+1Πt+2)
θ−1 + ...

]

−αβEtΠ
θ
t+1mct+1 − (αβ)

2
Et (Πt+1Πt+2)

θ
mct+2 + ...

This equation is also valid one period ahead

mct+1 =
θ − 1

θ
pot+1Et+1

[
1 + αβΠθ−1

t+2 + (αβ)2(Πt+2Πt+3)
θ−1 + ...

]

−αβEt+1Π
θ
t+2mct+2 − (αβ)

2
Et+1 (Πt+2Πt+3)

θ
mct+3 + ...

We use this last equation to substitute out mct+1, and obtain

mct =
θ − 1

θ
potEt

[
1 + αβΠθ−1

t+1 + (αβ)2(Πt+1Πt+2)
θ−1 + ...

]

−αβEtΠ
θ
t+1

θ − 1

θ
pot+1

[
1 + αβΠθ−1

t+2 + (αβ)2(Πt+2Πt+3)
θ−1 + ...

]
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This last expression can be rewritten as

mct =
θ − 1

θ
pot +

θ − 1

θ
Et

(
pot − pot+1Πt+1

) [
αβΠθ−1

t+1 + (αβ)
2
(Πt+1Πt+2)

θ−1
+ ...

]

We now derive the effect of future expected inflation on marginal cost

• ∂mct
∂Πt

= θ−1
θ

∂po
t

∂Πt

[
1 + αβΠθ−1

t+1 + (αβ)2(Πt+1Πt+2)
θ−1 + ...

]
• ∂mct

∂EtΠt+1
= (θ−1)2

θ Et

(
pot − pot+1Πt+1

)
Πθ−2

t+1

[
αβ + (αβ)2(Πt+2)

θ−1 + ...
]

• − θ−1
θ

(
∂po

t+1

∂Πt+1
Πt+1 + pot+1

) [
αβΠθ−1

t+1 + (αβ)
2
(Πt+1Πt+2)

θ−1
+ ...

]
• ∂mct

∂EtΠt+2
= (θ−1)2

θ Et

(
pot − pot+1Πt+1

)
Πθ−2

t+2

[
(αβ)2Πθ−1

t+1 + (αβ)3(Πt+1Πt+3)
θ−1 + ...

]
Under the assumption that αβΠθ is lower than 1, we obtain in steady state

• ∂mc
∂Π = θ−1

θ
∂po

∂Π
1

1−αβΠθ−1

• ∂mc
∂Π+1

= (θ−1)2

θ po(1−Π)Π
−1αβΠθ−1

1−αβΠθ−1 − θ−1
θ αβΠθ−1

(
∂po

∂Π Π+ po
)

1
1−αβΠθ−1

• ∂mc
∂Π+2

= (θ−1)2

θ po(1−Π)
Π−1

(
αβΠθ−1

)2

1−αβΠθ−1

where, with a slight abuse of notation, we have written the derivative ∂mct
∂EtΠt+n

evaluated in steady

state as ∂mc
∂Π+n

. For n ≥ 2, all derivatives share a common form

• ∂mc
∂Π+n

= (θ−1)2

θ po(1−Π)
Π−1

(
αβΠθ−1

)n

1−αβΠθ−1

We can now compute what the planner cares about, the discounted effect of inflation on marginal cost

Ξ =
Λ

mc(Π)−1 − s(Π)
=

∞∑
i=0

(ξ−1)i
∂mc

∂Π+i

After some algebra, we obtain

Ξ =
(θ − 1)

θ
po

αΠθ−2

1-αβΠθ−1

[
(1− β

ξΠ)(1− αβ
ξΠ

θ−1) + (θ − 1)(1−Π)βξ (1− αΠθ−1)
]

(1− αΠθ−1)(1− αβ
ξΠ

θ−1)

where po =
[
1−αΠθ−1

1−α

] 1
1−θ

.
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Derivation of Γ

We have

st = (1− α) (pot )
−θ

+ αΠθ
t st−1

Iterating backward, we obtain

st = (1− α)
[
(pot )

−θ
+ αΠθ

t

(
pot−1

)−θ
+ α2 (ΠtΠt−1)

θ (
pot−2

)−θ
+ ...

]

We can derive the effect of current and past inflation on st

• ∂st
∂Πt

= −θ(1− α) (pot )
−θ−1 ∂po

t

∂Πt
+ (1− α)θΠθ−1

t

[
α
(
pot−1

)−θ
+ α2Πθ

t−1

(
pot−2

)−θ
+ ...

]
• ∂st

∂Πt−1
= −θ(1−α)αΠθ

t

(
pot−1

)−θ−1 ∂po
t−1

∂Πt−1
+(1−α)θΠθ−1

t−1

[
α2Πθ

t

(
pot−2

)−θ
+ α3 (ΠtΠt−2)

θ (
pot−3

)−θ
+ ...

]
• ∂st

∂Πt−2
= −θ(1− α)α2 (ΠtΠt−1)

θ (
pot−2

)−θ−1 ∂po
t−2

∂Πt−2
+ (1− α)θΠθ−1

t−2

[
α3 (ΠtΠt−1)

θ (
pot−3

)−θ
+ ...

]
Under the assumption that αΠθ is lower than 1, we obtain in steady state

• ∂s
∂Π = θ(1− α)(po)−θ αΠθ−2

(1−αΠθ−1)(1−αΠθ)
(Π− 1)

• ∂s
∂Π−1

= αΠθ ∂s
∂Π

• ∂s
∂Π−2

= (αΠθ)2 ∂s
∂Π

where, again, ∂s
∂Π−n

is the derivative ∂s
∂Πt−n

evaluated in steady state. For n ≥ 2, all derivatives share

a common form

• ∂s
∂Π−n

= (αΠθ)n ∂s
∂Π

We can now compute what the planner cares about, the discounted effect of inflation on price dispersion

Φ =
Γ

ϕs(Π)−1 +mc(Π)
=

∞∑
i=0

ξi
∂s

∂Π−i

After some algebra, we find

Φ =
θ(1− α)(po)−θαΠθ−2

(1− αξΠθ)(1− αΠθ)(1− αΠθ−1)
(Π− 1)

40



7.2 Appendix 2: Ramsey problem in the New Keynesian model with a

perpetual youth structure

7.2.1 Setting up the problem

Since I am only interested in solving for the steady state of the Ramsey problem, I abstract from

uncertainty. I also drop all expectation operators in order to lighten the notation. The relevant

constraints faced by the Ramsey planner are the Phillips curve, the definition of dividends, the Euler

equations for shares and bonds (one per cohort), the intratemporal conditions for the optimal choice

of consumption and hours worked (one per cohort), the individual budget constraints of households

(one per cohort) as well as the bridge equations for aggregate consumption, aggregate hours worked

and aggregate shares.

1− θ + θwt − φpΠt(Πt − 1) +
Πt+1

1 +Rt
φpΠt+1(Πt+1 − 1)

Zt+1Lt+1

ZtLt
= 0

Dt = Lt

(
1− φp

2
(Πt − 1)2

)
− wtLt

Qt = β
Cj,t

Cj,t+1
(Qt+1 +Dt+1)

β
Cj,t

Cj,t+1

1 +Rt

Πt+1
= 1

χ
Cj,t

1− Lj,t
= wt

Cj,t +QtSj,t =
1

1− γ
[(Qt +Dt)Sj,t−1] + wtLj,t

Ct =

t∑
j=−∞

γ(1− γ)t−jCj,t

Lt =

t∑
j=−∞

γ(1− γ)t−jLj,t
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1 =

t∑
j=−∞

γ(1− γ)t−jSj,t

This set of constraints can be simplified in a few steps:

• Introduce the definition of the stochastic discount factor β
Cj,t

Cj,t+1
= βt,t+1.

• Use the bridge equations for consumption and shares to aggregate the cohort-specific budget

constraints and substitute out the equation for dividends. We obtain an aggregate resource

constraint.

• Operate a change of variables Sj,t−1 =
Ωj,t(1−γ)
Qt+Dt

and substitute out share prices Qt in the

cohort-specific budget constraints.

• Use the intratemporal household optimality condition and the bridge equation for hours worked

to substitute out Lj,t and Lt.

• Assume that the planner chooses directly the allocation and drop the individual Euler equations.

It can be shown to be equivalent to choosing a path {Rt}∞t=0.

At this stage, provided that β(1−γ)
ξ < 1, the aggregate welfare function (38) is equal to

W0 =

∞∑
t=0

ξt

 γ

1− β(1−γ)
ξ

(χlog(χ)− χlog(wt)) + (1 + χ)

t∑
j=−∞

γ

(
β (1− γ)

ξ

)t−j

log(Cj,t)


and the constraints are given by

1− θ + θwt − φpΠt(Πt − 1) + βt,t+1φ
pΠt+1(Πt+1 − 1)

1− χ
wt+1

Ct+1

1− χ
wt

Ct
= 0

β
Cj,t

Cj,t+1
= βt,t+1

Cj,t (1 + χ) + βt,t+1(1− γ)Ωj,t+1 = Ωj,t + wt

Ct = Lt

(
1− φp

2
(Πt − 1)2

)
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Ct =

t∑
j=−∞

γ(1− γ)t−jCj,t

where, again, there is one budget constraint and one equation linking consumption growth to the

stochastic discount factor for each cohort. We now go one step further and get rid of cohort-specific

variables. First, as shown in the main text, we can express the consumption level of newly-born

households as a function of aggregate variables only. For generation j

Cj,j
1 + χ

1− β(1− γ)
= wj +

∞∑
h=1

βj,j+h(1− γ)hwj+h

Second, we can express the consumption level of generation j at any given time t as a function of Cj,j

and a series of stochastic discount factors

Cj,t =
βt−j

βj,t
Cj,j

where βj,t = βj,j+1βj+1,j+2....βt−1,t. This permits to express all Cj,t for j = −∞, ..., t as a function

of aggregate variables only. In the end, the central bank chooses aggregate consumption, inflation,

wages, and stochastic discount factors to maximize the following Lagrangian

L =

∞∑
t=0

ξt(− χγ

1− β(1−γ)
ξ

log(wt) + (1 + χ)

t∑
j=−∞

γ

(
β (1− γ)

ξ

)t−j
[
log

(
wj +

∞∑
h=1

βj,j+h(1− γ)hwj+h

)
− log (βj,t)

]

+λ1t

[
θ − 1

θ
+

φp

θ
Πt(Πt − 1)− βt,t+1

φp

θ
Πt+1(Πt+1 − 1)

1− χ
wt+1

Ct+1

1− χ
wt

Ct
− wt

]

+λ2t

[(
1− φp

2
(Πt − 1)2

)(
1− χ

wt
Ct

)
− Ct

]

+λ3t

 t∑
j=−∞

γ(1− γ)t−j β
t−j

βj,t

(
wj +

∞∑
h=1

βj,j+h(1− γ)hwj+h

)
− 1 + χ

1− β(1− γ)
Ct

)
I compute first-order conditions in time t = t1, where t1 is arbitrarily large. Due to the dynamic

nature of consumption and pricing decisions, such choices for time t1 consumption, inflation, wages,

and stochastic discount factors will have an effet on real outcomes in other periods as well.
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7.2.2 Solving the Ramsey problem

The infinite sums that are present in the welfare function and the third constraint make it very difficult

to compute optimal monetary policy in response to shocks. They do, however, make it possible to

derive analytical expressions for the first-order conditions in steady state by applying standard formulas

for infinite geometric series. Provided that some restrictions on β, ξ, γ and β̃ are verified, the first-order

conditions evaluated in steady state are

• FOC n°1: λ3
γ(1−γ)w

1−β(1−γ)2

[
1

1−β̃(1−γ)
1

1− β̃
ξ (1−γ)

− βξ

β̃2

1

1− βξ(1−γ)

β̃

1
1− β

β̃
(1−γ)

]

• −β(1−γ)

β̃

γ

1− β
ξ (1−γ)

1+χ
1−β(1−γ) +

γ(1−γ)(1+χ)

1− β
ξ β̃(1−γ)2

[
1

1−β(1−γ) +
β̃
ξ (1−γ)

1− β̃
ξ (1−γ)

]
− λ1

φp

θ Π(Π− 1) = 0

• FOC n°2: λ1
φp

θ (2Π− 1)
(
1− β̃

ξ

)
− λ2φ

p (Π− 1)L = 0

• FOC n°3:−λ1
χ
wL β̃

φp

θ Π(Π− 1)
(
1− 1

ξ

)
− λ2

(
1 +

(
1− φp

2 (Π− 1)2
)

χ
w

)
− 1+χ

1−β(1−γ)λ3 = 0

• FOC n°4: γ(1+χ)
w

1−β̃(1−γ)

1− β
ξ β̃(1−γ)2

[
1

1−β(1−γ) +
β̃
ξ (1−γ)

1− β̃
ξ (1−γ)

]
− χγ

1− β(1−γ)
ξ

1
w+λ3

γ
1−β(1−γ)2

[
1

1− βξ(1−γ)

β̃

+
β̃
ξ (1−γ)

1− β̃(1−γ)
ξ

]
• −λ1

[
1 + β̃ φp

θ Π(Π− 1) 1−L
wL

(
1
ξ − 1

)]
+ λ2

(
1− φp

2 (Π− 1)2
)

1−L
w = 0

where FOC n°1 is the first-order condition with respect to βt,t+1, FOC n°2 is the first-order condition

with respect to Πt, FOC n°3 is the first-order condition with respect to Ct, and FOC n°4 is the

first-order condition with respect to wt. The constraints to the Ramsey problem can be used to solve

for β̃, w and L as a function of Π. Given this, we can use FOCs n°1, n°3 and n°4 to solve for λ1, λ2, λ3

as a function of Π. FOC n°2 then determines the optimal inflation rate. I rewrite the system as

• FOC n°1: λ3ω1 − ω2 − λ1
φp

θ Π(Π− 1) = 0

• FOC n°2: λ1
1
θ (2Π− 1)

(
1− β̃

ξ

)
− λ2 (Π− 1)L = 0

• FOC n°3: −λ1ω3 − λ2ω4 − 1+χ
1−β(1−γ)λ3 = 0

• FOC n°4: ω5 + λ3ω6 − λ1ω7 + λ2ω8 = 0

where

• ω1 = γ(1−γ)w

1−β(1−γ)2

[
1

1−β̃(1−γ)
1

1− β̃
ξ (1−γ)

− βξ

β̃2

1

1− βξ(1−γ)

β̃

1
1− β

β̃
(1−γ)

]

• ω2 = β(1−γ)

β̃

γ

1− β
ξ (1−γ)

1+χ
1−β(1−γ) −

γ(1−γ)(1+χ)

1− β
ξ β̃(1−γ)2

[
1

1−β(1−γ) +
β̃
ξ (1−γ)

1− β̃
ξ (1−γ)

]
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• ω3 = χ
wL β̃

φp

θ Π(Π− 1)
(
1− 1

ξ

)
• ω4 = 1 +

(
1− φp

2 (Π− 1)2
)

χ
w

• ω5 = γ(1+χ)
w

1−β̃(1−γ)

1− β
ξ β̃(1−γ)2

[
1

1−β(1−γ) +
β̃
ξ (1−γ)

1− β̃
ξ (1−γ)

]
− χγ

1− β(1−γ)
ξ

1
w

• ω6 = γ
1−β(1−γ)2

[
1

1− βξ(1−γ)

β̃

+
β̃
ξ (1−γ)

1− β̃(1−γ)
ξ

]
• ω7 = 1 + β̃ φp

θ Π(Π− 1) 1−L
wL

(
1
ξ − 1

)
• ω8 =

(
1− φp

2 (Π− 1)2
)

1−L
w

Using FOCs n°1, n°3, and n°4, I obtain the following expressions for λ1 and λ2

λ1 =
−ω5 − ω2

ω1
ω6 +

1+χ
1−β(1−γ)

ω2ω8

ω1ω4

−ω7 −
ω3ω8

ω4
+

φp

θ Π(Π−1)

ω1

(
ω6 − ω8

ω4

1+χ
1−β(1−γ)

)

λ2 = − 1 + χ

1− β(1− γ)

ω2

ω1ω4
− λ1

(
φp

θ Π(Π− 1)

ω1ω4

1 + χ

1− β(1− γ)
+

ω3

ω4

)

In a zero-inflation steady state, Π = 1 and FOC n°2 implies that

−
−ω5ω1 + ω2

(
1+χ

1−β(1−γ)
1−L
w+χ − ω6

)
θ

(
1− β̃

ξ

)
= 0

This equality is verified in two cases:

• When θ tends towards infinity, β̃ tends towards β and this condition is verified regardless of the

value of ξ. In that case, although the steady state is inefficient (ξ differs from β̃), zero inflation

is optimal as monetary policy loses its leverage over markups.

• When θ is finite, this condition is verified if the social discount factor ξ tracks exactly the value

of the stochastic discount factor β̃ prevailing in the zero-inflation steady state.

This proves the proposition in the main text.
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7.3 Appendix 3: Optimal long-run inflation in Bilbiie, Fujiwara and Ghi-

roni (2014)

This section derives the Ramsey problem in Bilbiie, Fujiwara and Ghironi (2014) for an arbitrary

value of the social discount factor ξ. I use the notations of the aforementioned paper. The monetary

authority chooses Lt, πt, LC,t and Nt+1 to maximize

MaxLt,πt,LC,t,Nt+1 E0

∞∑
t=0

ξt(ln
[(

1− κ

2
π2
t

)
Ztρ(Nt)LC,t

]
− h(Lt)

+η1,t

[
Nt+1 − (1− δ)

(
Nt +

(Lt − LC,t)Zt

fE

)]

+η2,t

[
(1− θ(Nt))

(
1− κ

2
π2
t

)
+ θ(Nt)

(
1− κ

2
π2
t

)
LC,thL(Lt)− κπt(1 + πt) + β(1− δ)κπt+1 (1 + πt+1)

Nt

Nt+1

1− κ
2π

2
t

1− κ
2π

2
t+1

]

+η3,t

[
hL(Lt)

fE
Zt

− β(1− δ)

(
hL(Lt+1)

fE
Zt+1

+
1− LC,t+1hL(Lt+1)

Nt+1

)]
)

where ξ is the social discount factor. The first-order conditions evaluated in steady state are equal to

• Lt : −1− η1

hL(L) (1− δ) + η2θ(N)
(
1− κ

2π
2
)

LC

L ϕ+ η3
ϕ
L

[
1− β(1−δ)

ξ + β(1−δ)
ξ

LC

N

]
= 0

• πt :
−π

1−κ
2 π

2−η2

(
π (1− θ(Nt) + θ(Nt)LC,thL(Lt)) + β(1− δ)κπ2 (1 + π) 1

1−κ
2 π

2 + 1 + 2πt − β(1−δ)
ξ

1+κ
2 π

2+2π

1−κ
2 π

2

)
=

0

• LC,t : 1 + η1LC(1− δ) + η2θ(N)
(
1− κ

2π
2
)
LChL(L) + η3

β(1−δ)
ξ

LChL(L)
N = 0

• Nt+1 : ξε(N)+η1N (1− ξ(1− δ))−η2β(1−δ)κπ (1 + π) (1− ξ)+ξη2NθN (N)
(
1− κ

2π
2
)
(LChL(L)− 1)+

η3β(1− δ) 1−LChL(L)
N = 0

Consider the FOCs above in a zero-inflation steady state (π = 0)

• FOC n°1:−1− η1

hL(L) (1− δ) + η2θ(N)LC

L ϕ+ η3
ϕ
L

[
1− β(1−δ)

ξ + β(1−δ)
ξ

LC

N

]
= 0

• FOC n°2: −η2

(
1− β(1−δ)

ξ

)
= 0

• FOC n°3: 1 + η1LC(1− δ) + η2 (θ(N)− 1) + η3
β(1−δ)

ξ
θ(N)−1
θ(N)

1
N = 0
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• FOC n°4: ξε(N) + η1N (1− ξ(1− δ))− η2ξη2N
θN (N)
θ(N) + η3

β(1−δ)
θ(N)N = 0

We can solve for η1, η2 and η3 using FOCs n°1, n°3 and n°4 and substitute the resulting expression of

η2 in FOC n°2. By doing so, we get an equality that has to be verified for zero inflation to be optimal.

Substituting out η3 using FOC n°4

• FOC n°1: −1− ξ
β(1−δ)ε(N)θ(N)ϕLN

(
1− β(1−δ)

ξ + β(1−δ)
ξ

LC

N

)
• −η1

[
1−δ

hL(L) +
(

1−ξ(1−δ)
β(1−δ)

)
θ(N)N2 ϕ

L

(
1− β(1−δ)

ξ + β(1−δ)
ξ

LC

N

)]
• +η2

ϕ
L

[
θ(N)LC + ξ

β(1−δ)θN (N)N2
(
1− β(1−δ)

ξ + β(1−δ)
ξ

LC

N

)]
= 0

• FOC n°3: LC,t : 1−ε(N) (θ(N)− 1)+η1

(
LC(1− δ)− (1− ξ(1− δ)) (θ(N)−1)N

ξ

)
+η2 (θ(N)− 1)

(
1 + θN (N)N

θ(N)

)
=

0

Relabeling

• FOC n°1: ω1 − η1ω2 + η2ω3 = 0

• FOC n°3: 1− ε(N) (θ(N)− 1) + η1ω4 + η2 (θ(N)− 1)
(
1 + θN (N)N

θ(N)

)
= 0

And solving for η2

η2 =
−ω2 (1− ε(N) (θ(N)− 1))− ω4ω1

ω3ω4 + ω2 (θ(N)− 1)
(
1 + θN (N)N

θ(N)

)
Substituting the expression of η2 in FOC n°2, we get an equality that has to be verified for optimal

inflation to be zero

ω2 (1− ε(N) (θ(N)− 1)) + ω4ω1

ω3ω4 + ω2 (θ(N)− 1)
(
1 + θN (N)N

θ(N)

) (1− β(1− δ)

ξ

)
= 0 (46)

where

• ω1 = −1− ξε(N)ϕL
θ(N)N
β(1−δ)

[
1− β(1−δ)

ξ + β(1−δ)
ξ

LC

N

]
• ω2 = 1−δ

hL(L) + (1− ξ(1− δ)) ϕ
L

θ(N)N2

β(1−δ)

(
1− β(1−δ)

ξ + β(1−δ)
ξ

LC

N

)
• ω3 = ϕ

L

[
θ(N)LC + ξ

β(1−δ)θN (N)N2
(
1− β(1−δ)

ξ + β(1−δ)
ξ

LC

N

)]
• ω4 = LC(1− δ)− (1− ξ(1− δ)) (θ(N)−1)N

ξ

The equality is verified in two distinct cases.
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Case 1: Efficient steady state (ε(N) = 1
θ(N)−1) and ξ = β.

Equation (46) becomes
ω4ω1

ω3ω4 + ω2 (θ(N)− 1)
(
1 + θN (N)N

θ(N)

)δ = 0

Noting that in steady state δ
1−δN + LC = L, ω1 simplifies to

ω1 = −1− ϕ
θ(N)

θ(N)− 1
< 0

ω1 is negative as long as θ(N) > 1. Moreover, we know that in steady state hL(L) (1− β(1− δ)) −

β(1− δ) 1−LChL(L)
N = 0. This implies

(θ(N)− 1)
N

β
(1− β(1− δ))− (1− δ)LC = 0

and thus ω4 = 0. Given that ω2 > 0, θ(N) > 1 and θN (N) > 0 for all preference specifications

considered in the paper, we conclude that (46) is verified in that particular case. Zero long-run

inflation is optimal.

Case 2: Inefficient steady state and ξ = β(1− ρ).

The second term in (46), 1 − β(1−δ)
ξ , is equal to zero. Thus, as long as the denominator of the first

term is different from zero, the equality is verified and optimal inflation is equal to zero in the long

run.

7.4 Appendix 4: Optimal long-run inflation in a model with search and

matching frictions and costly wage bargaining

I consider a New Keynesian model with search and matching frictions in the labor market and nominal

wage stickiness. It is similar to the one developed in Lepetit (2018) except wages are bargained over

and firms incur a cost of adjusting nominal wages.

7.4.1 Labor market

The size of the labor force is normalized to unity. Workers and firms need to match in order to

become productive. The number of matches in period t is given by a Cobb-Douglas matching function
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mt = χsαt v
1−α
t , st being the number of job seekers and vt the number of vacancies posted by firms.

The parameter χ reflects the efficiency of the matching process and α ∈ [0, 1] is the elasticity of

the matching function with respect to unemployment. Define θt = vt
st

as labor market tightness.

The probability qt for a firm to fill a vacancy and the probability pt for a worker to find a job are,

respectively, qt = mt

vt
= χθ−α

t and pt = mt

st
= χθ1−α

t . At the beginning of each period t, a fraction

ρ of existing employment relationships Nt−1 is exogenously destroyed. Those ρNt−1 newly separated

workers and the 1 − Nt−1 workers unemployed in the previous period form the pool of job seekers

st = 1− (1− ρ)Nt−1. Job seekers have a probability pt of finding a job within the period. The law of

motion of employment Nt is accordingly given by

Nt = (1− ρ)Nt−1 + pt(1− (1− ρ)Nt−1) (47)

The number of unemployed workers in period t is ut = 1−Nt.

7.4.2 Households

Household members receive a nominal wage Wt when employed and a real value b of home production

when unemployed. I assume that consumption risks are fully pooled within the household. Household

members have expected intertemporal utility

E0

∞∑
t=0

βtC
1−σ
t

1− σ
(48)

where β is the household’s subjective discount factor, σ the coefficient of relative risk aversion, and Ct

the consumption level of each household member. Households receive profits Πr
t from retail firms and

invest in risk-free bonds Bt+1 that promise a unit of currency tomorrow and cost (1 + Rt)
−1 today.

They face the following per period budget constraint

PtCt + (1 +Rt)
−1Bt+1 = Pt

[
Wt

Pt
Nt + b(1−Nt)

]
+Bt + PtΠ

r
t (49)

Consumption of market goods is given by Cm
t = Ct − b(1 − Nt). Cm

t ≡
[∫ 1

0
Cm

t (j)
ε−1
ε dj

] ε
ε−1

is a

Dixit-Stiglitz aggregator of the different varieties of goods produced by the retail sector and ε is the

elasticity of substitution between the different varieties. The optimal allocation of income on each

variety is given by Cm
t (j) =

[
Pt(j)
Pt

]−ε

Cm
t , where Pt =

[∫ 1

0
Pt(j)

ε−1
ε dj

]ε/(1−ε)

is the price index and
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Pt(j) is the price of a good of variety j. Households choose bonds holding so as to maximize (48)

subject to (49). The household’s optimal consumption path is governed by a standard Euler equation

βEt
1 + It
Πt+1

(
Ct+1

Ct

)−σ

= 1 (50)

where Πt+1 = Pt+1

Pt
is the gross inflation rate between periods t and t+ 1.

7.4.3 Wholesale firms

A measure one of wholesale firms, indexed by i, produce according to the following technology

Y w
it = ZtNit (51)

where Zt is a common, aggregate productivity disturbance. Wholesale firms sell their output in a

competitive market at a price Pw
t . Posting a vacancy comes at a cost κ and firms must incur a cost

cwit = φw

2

(
Wit

Wit−1Πι
t−1

− 1
)2

per worker when adjusting nominal wages. These costs are indexed to

lagged inflation with coefficient ι. Firm i chooses its level of employment Nit and the number of

vacancies vit in order to maximize the expected sum of its discounted profits

E0

∞∑
t=0

βtC
−σ
t

C−σ
0

[
Pw
t

Pt
Y w
it − κvit −

Wit

Pt
Nit − cwitNit

]
(52)

subject to its perceived law of evolution of employment Nit = (1−ρ)Nit−1+vitq(θt), and taking wages

as given. I assume symmetry across workers and firms, and therefore, drop individual subscripts i.

After rearranging the first-order conditions, the following job creation equation obtains

κ

q(θt)
=

Zt

µt
− Wt

Pt
− cwt + Etβt,t+1(1− ρ)

κ

q(θt+1)
(53)

where βt,t+1 = β
(

Ct+1

Ct

)−σ

is the stochastic discount factor of households between periods t and t+1

and µt =
Pt

Pw
t

is the markup of retail over wholesale prices.

7.4.4 Wage bargaining

The value of a filled vacancy for a firm is
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Jt =
Zt

µt
− Wt

Pt
− cwt + Etβt,t+1(1− ρ)Jt+1

and free entry implies that κ
q(θt)

= Jt. The value of being employed for a worker is

Ht =
Wt

Pt
+ Etβt,t+1 [(1− ρ)Ht+1 + ρpt+1Ht+1 + ρ(1− pt+1)Ut+1]

and the value of being unemployed is

Ut = b+ Etβt,t+1 [pt+1Ht+1 + (1− pt+1)Ut+1]

Firms and workers bargain over nominal wages in order to maximize

argmax{Wt}

[
(Jt)

η
(Ht − Ut)

1−η
]

where 1− η is the bargaining power of workers. We obtain the following sharing rule

Jt = ηt (Ht − Ut + Jt)

where ηt =
ηγt

1−η+ηγt
is a modified bargaining power, after taking into account the effect of adjustment

costs, and

γt = 1 +
φw

wt

Πw
t

Πι
t−1

(
Πw

t

Πι
t−1

− 1

)
− Etβt,t+1(1− ρ)

φw

wt

Πw
t+1

Πι
t

(
Πw

t+1

Πι
t

− 1

)
(54)

where Πw
t = Wt

Wt−1
. In the absence of productivity growth, Πw = Π in steady state and γ grows with

Π as long as ι < 1. Given that ∂ηt

∂γt
= η(1−η)

(1−η+ηγt)
2 > 0, this implies that the share of the match surplus

accruing to firms rises with inflation. The rationale for this result is as follows. As in the other models

considered in this paper, the effects of wage and price inflation are dynamic. Higher wage inflation at

time t is associated with larger adjustment costs and a lower firm surplus at time t, but with lower

adjustment costs and a higher firm surplus at time t + 1. Because the future is discounted with a

factor β (1− ρ), these effects are asymmetric. Therefore, an increase in the time t wage inflation rate

raises average adjustment costs. These costs are partially shared with workers through the bargaining

process. Without adjustment costs, an increasing in nominal wages leads to symmetric variations in

firms’ and worker’s surpluses. As a result, maximizing a weighted average of these surpluses implies
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sharing the overall surplus according to the exogenous weight η. With adjustment costs, increasing

nominal wages decreases firms’ surplus by more than it increases workers’ surplus. In that case,

maximizing the objective function is consistent with putting a larger weight on firm outcomes, with

the weight depending on the size of adjustment costs. In steady state, wage inflation is equal to price

inflation, adjustment costs rise with inflation, and so does the bargaining power of firms.

After some algebra, we obtain the following wage equation

wt =
Wt

Pt
= (1− ηt)

(
Zt

µt
− cwt

)
+ ηtb+ Etβt+1(1− ρ)

κ

q(θt+1)

(
1− ηt − (1− pt+1) (1− ηt+1)

ηt
ηt+1

)
(55)

7.4.5 Retail firms

There is a large number of retailers, indexed by j, who buy the goods produced by wholesale firms

at a price Pw
t and transform them one for one into differentiated goods. The real marginal cost

of production for retailers is given by mct =
Pw

t

Pt
. They face quadratic costs of adjusting prices

Θt(j) =
φp

2

(
Pt(j)

Pt−1(j)
− 1
)2

Yt, which are measured in terms of aggregate output Yt. Retail firms choose

Pt(j) in order to maximize

E0

∞∑
t=0

βtC
−σ
t

C−σ
0

[
Pt(j)− Pw

t

Pt
Yt(j)−Θt(j)

]

subject to the demand for each variety Yt(j) = (Pt(j)/Pt)
−εY d

t where Y d
t is aggregate demand for final

goods. Noting that in the symmetric equilibrium Pt(j) = Pt, we obtain

1− ε+
ε

µt
− φpΠt (Πt − 1) + Etβt+1φ

pΠt+1 (Πt+1 − 1)
Zt+1Nt+1

ZtNt
= 0 (56)

7.4.6 Equilibrium

The economy-wide resource constraint is obtained by aggregating the budget constraints of households.

Final output and home production can be used for consumption or to cover the deadweight costs of

posting vacancies or changing prices and wages

Ct = ZtNt

(
1− φp

2
(Πt − 1)

2

)
+ b(1−Nt)− κvt −Ntc

w
t (57)
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We can now define an equilibrium.

definition: A competitive equilibrium is a set of plans {Ct, Rt, Nt, µt, θt,Πt, wt,Π
w
t , ηt, γt, c

w
t } sat-

isfying equations (47), (50), (53), (54), (55), (56), (57), the definitions Πw
t = wt

wt−1
Πt, ηt = ηγt

1−η+ηγt
,

cwt = φw

2

(
Πw

t

Πι
t−1

− 1
)2

, given a specification for the exogenous process Zt and for monetary policy Rt,

and initial conditions N−1, Π−1.

7.4.7 Ramsey optimal monetary policy

I operate a change of variable by expressing markups as a function of marginal cost µt =
1

mct
. The

monetary authority chooses a sequence {Πt, Ct, θt, wt, Nt,Π
w
t , c

w
t , ηt, γt,mct} to maximize the following

Lagrangian

L = E0

∞∑
t=0

ξt(
C1−σ

t

1− σ
+ λ1t

[
Ztmct − wt − cwt + Etβ

(
Ct+1

Ct

)−σ

(1− ρ)
κ

χ
θαt+1 −

κ

χ
θαt

]

+λ2t

[
(1− ρ)Nt−1 + χθ1−α

t (1− (1− ρ)Nt−1)−Nt

]

+λ3t

[
ZtNt

(
1− φp

2
(Πt − 1)

2

)
+ b(1−Nt)− κθt (1− (1− ρ)Nt−1)−Ntc

w
t − Ct

]

+λ4t

[
(1− ηt) (Ztmct − cwt ) + ηtb+ Etβ

(
Ct+1

Ct

)−σ

(1− ρ)
κ

χ
θαt+1

(
1− ηt − (1− χθ1−α

t+1 ) (1− ηt+1)
ηt

ηt+1

)
− wt

]

+λ5t

[
wt

wt−1
Πt −Πw

t

]
+ λ6t

[
φw

2

(
Πw

t

Πι
t−1

− 1

)2

− cwt

]
+ λ7t

[
ηγt

1− η + ηγt
− ηt

]

+λ8t

[
1 +

φw

wt

Πw
t

Πι
t−1

(
Πw

t

Πι
t−1

− 1

)
− Etβ

(
Ct+1

Ct

)−σ

(1− ρ)
φw

wt

Πw
t+1

Πι
t

(
Πw

t+1

Πι
t

− 1

)
− γt

]

+λ9t

[
1− ε+ εmct − φpΠt (Πt − 1) + Etβ

(
Ct+1

Ct

)−σ

φpΠt+1 (Πt+1 − 1)
Zt+1Nt+1

ZtNt

]
)
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The first-order conditions evaluated in steady state are

• Πt : −λ3Nφp (Π− 1) + λ5 − ιφ
w

w Π−ι
(
1− 2Π1−ι

)
(β(1− ρ)− ξ)λ8 − φp (2Π− 1)λ9

(
1− β

ξ

)
−

ξλ6φ
wιΠ−ι

(
Π1−ι − 1

)
= 0

• θt : −κ
χαθ

α−1λ1

(
1− β

ξ (1− ρ)
)
+λ2χ(1−α)θ−α (1− (1− ρ)N)−λ3κ (1− (1− ρ)N)+λ4

β
ξ (1−

ρ)κ (1− η̃) = 0

• wt : −λ1 − λ4 + λ5
Π
w (1− ξ)− λ8

φw

w2 Π
1−ι
(
Π1−ι − 1

)
(1− β(1− ρ)) = 0

• Nt :−λ2

(
1− ξ(1− ρ)(1− χθ1−α)

)
+λ3

(
1− φp

2 (Π− 1)
2 − b− cw + ξκθ(1− ρ)

)
−λ9βφ

pΠ(Π− 1) 1
N

(
1− 1

ξ

)
=

0

• Πw
t : −λ5 + λ6φ

wΠ−ι
(
Π1−ι − 1

)
+ φwΠ−ι

(
2Π1−ι − 1

)
λ8

w

(
1− β

ξ (1− ρ)
)

• cwt : −λ1 − λ3N − λ4(1− η̃)− λ6 = 0

• ηt : λ4

[
b−mc+ cw + β(1− ρ)κη̃

(
θ (1− η̃)− θα

χ + 1
ξ

(
θα
t

χ − θt

))]
− λ7 = 0

• γt : λ7
η(1−η)

(1−η+ηγ)2
− λ8 = 0

• mct : λ1 + λ4 (1− η̃) + ελ9 = 0

• Ct : C
−σ−λ3+σβC−1(1−ρ)

(
1− 1

ξ

) [
λ1

κ
χθ

α + λ4κθ (1− η̃)− λ8
φw

w Π1−ι
(
Π1−ι − 1

)
+ λ9

φp

1−ρΠ(Π− 1)
]
=

0

where η̃ denotes the steady-state value of ηt. I now evaluate the system when Π = 1, solve for the

Lagrange multipliers, and substitute their expressions back in the first-order condition with respect to

Πt. I obtain the following condition

−ω3C
−σ

[
ω5ω1 + (ω5ω4 − 1) φp

ε

(
1− β

ξ

)
+ (1− η) φp

ε

(
1− β

ξ

)]
β
ξ (1− ρ)κ (1− η) + (ω5ω4 − 1)ω2 + ω3 ((ω5ω4 − 1)ω6 + ω7)

= 0

with

• ω1 = η (1− η) φw

w

(
1− β

ξ (1− ρ) + ι (β(1− ρ)− ξ)
)

• ω2 = −κ
χαθ

α−1
(
1− β

ξ (1− ρ)
)

• ω3 = (1− (1− ρ)N)
[
(1−b+ξκθ(1−ρ))χ(1−α)θ−α

1−ξ(1−ρ)(1−χθ1−α) − κ
]

• ω4 = η (1− η) φw

w2

(
1− β

ξ (1− ρ)
)
(1− ξ)
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• ω5 = b−mc+ β(1− ρ)κη

(
θ (1− η)− θα

χ + 1
ξ

(
θα
t

χ − θ
))

• ω6 = σβC−1(1− ρ)
(
1− 1

ξ

)
κ
χθ

α

• ω7 = σβC−1(1− ρ)
(
1− 1

ξ

)
κθ (1− η)

Zero inflation is optimal when this equality is verified. I consider different cases in order to understand

the role played by each friction in isolation.

Case 1: Nominal wages are flexible, φw = 0 and prices are sticky φp 6= 0.

In that case, ω1 and ω4 are equal to zero. The condition becomes

−ω3C
−σ

−η φp

ε

(
1− β

ξ

)
β
ξ (1− ρ)κ (1− η)− ω2 + ω3 (−ω6 + ω7)

= 0

As long as the denominator is different from zero, this equality is verified if β = ξ, or if the steady

state is efficient, in which case ω3 = 0. In that case, inflation only influences real activity through price

markups. Zero inflation is optimal if the social discount factor ξ is equal to the steady state discount

factor appearing in the price Phillips curve β.

Case 2: Nominal wages are sticky, φw 6= 0 and prices are flexible φp = 0.

The condition becomes

−ω3C
−σ ω5ω1

β
ξ (1− ρ)κ (1− η) + (ω5ω4 − 1)ω2 + ω3 ((ω5ω4 − 1)ω6 + ω7)

= 0

As long as the denominator is different from zero, this equality is verified if ξ = β (1− ρ), in which case

ω1 = 0, or if the steady state is efficient, in which case ω3 = 0. In that case, inflation only influences

real activity through wage markups. Zero inflation is optimal is the social discount factor ξ is equal

to the steady state discount factor used by firms and workers during wage negotiations β (1− ρ).

Case 3: Both nominal wages and prices are sticky, φw 6= 0 and φp 6= 0.
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The condition becomes

−ω3C
−σ

[
ω5ω1 + (ω5ω4 − 1) φp

ε

(
1− β

ξ

)
+ (1− η) φp

ε

(
1− β

ξ

)]
β
ξ (1− ρ)κ (1− η) + (ω5ω4 − 1)ω2 + ω3 ((ω5ω4 − 1)ω6 + ω7)

= 0

As long as the denominator is different from zero, this condition is verified only if the steady state

is efficient, in which case ω3 = 0. Inflation influences real activity through both price and wage

markups. When ξ = β, the discounted effects of inflation on price markups is equal to zero, but the

discounted effects of inflation on wage markup is positive. As a result, optimal inflation is positive.

When ξ = β (1− ρ), the discounted effects of inflation on wage markups is zero, but the discounted

effects of inflation on price markups is negative. As a result, optimal inflation is negative. Optimal

inflation is equal to zero only when the steady state is efficient.

Quantitative results

I now solve for numerical values of the optimal long-run inflation rate by using the nine constraints to

the Ramsey problem as well as the ten first-order conditions derived above. The model is parameterized

as follows. A few parameters are calibrated similarly as in the model of section 2 in the main text. I

set the household discount factor to β = 0.995, the elasticity of substitution between goods to ε = 6,

the coefficient of relative risk aversion to σ = 1 and the price adjustment cost parameter to φp = 40.

In most estimated models, wage stickiness is found to be larger than price stickiness (see for example

Furlanetto and Groshenny 2016 in a similar search and matching model). I thus choose φw = 100

and experiment with other values below. I also assume that the costs of adjusting nominal wages are

not indexed to past inflation in the baseline and show some robustness exercises below. Turning to

labor market parameters, I fix the elasticity of matches with respect to unemployment at α = 0.5,

within the range of plausible values proposed by Petrongolo and Pissarides (2001). I set the values of

unemployment and labor market tightness in a zero-inflation steady state to 5% and 0.7 respectively,

and the quarterly job separation probability to 0.1. These targets imply through the steady-state

employment flow equation a quarterly job-finding probability of 0.66, and through the definition of

the job-finding probability, a matching efficiency of 0.78. Silva and Toledo (2009) report that hiring

costs amount to about 14% of quarterly employee compensation when expenses such as advertisement

costs, agency fees, or travel costs for applicants are accounted for on top of the number of hours

spent by company employees on recruiting. Thus, the vacancy posting cost is assumed to be equal to
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κ = 0.14qw. I can then back out the steady-state value of the real wage from the job creation equation.

I obtain w = mc
1+0.14(1−β(1−ρ)) = 0.82 and κ = 0.11. Given a calibrated value for the value of home

production b = 0.4, this implies a value for the exogenous bargaining power through the steady state

wage equation η = w−mc−β(1−ρ)κθ
b−mc−β(1−ρ)κθ . Lastly, the social discount factor is assumed to be equal to the

household discount factor ξ = β. When goods market are perfectly competitive, job creation in the

zero-inflation steady state is efficient when η = 1−α (Hosios 1990). With this calibration, job creation

is too low both because of the presence of monopolistic competition and because η differs from 1− α.

Figure 6 shows that the optimal inflation rate in this baseline calibration hovers around 1.6% in annual

terms and is quite insensitive to the degree of wage stickiness φw. Figure 7 shows that the optimal

inflation rate increases with the degree of indexation of nominal wages to past inflation. Two effects are

at play. First, for a given inflation rate, an increase in ι reduces the costs of wage adjustment, thereby

freeing up a larger share of output available for consumption. It also raises the size of the surplus to be

shared between workers and firms and, for a given value of η̃, boosts job creation. Second, increasing

inflation becomes less effective at influencing job creation through the effective bargaining power η̃ as

ι becomes larger. In this quantitative application, the first effect seems to dominate. Moreover, the

optimal inflation rate remains positive even in the limit case where ι = 1. In that case, while the effects

of inflation on wage markups are on average equal to zero, they are still distributed over time and

real outcomes happening in different periods are weighted differently by the planner. Zero inflation is

optimal only when this weighting effect is absent, that is when ξ = 1, and prices are flexible (when

ξ = 1, the presence of sticky prices calls for positive inflation).
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